
Time series forecasting with Gaussian Processes
needs priors

Giorgio Corani1, Alessio Benavoli2, and Marco Zaffalon1

1 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)
USI - SUPSI

Lugano, Switzerland
giorgio.corani{marco.zaffalon}@idsia.ch
2 School of Computer Science and Statistics

Trinity College Dublin
Ireland. alessio.benavoli@tcd.ie

Abstract. Automatic forecasting is the task of receiving a time series
and returning a forecast for the next time steps without any human in-
tervention. Gaussian Processes (GPs) are a powerful tool for modeling
time series, but so far there are no competitive approaches for automatic
forecasting based on GPs. We propose practical solutions to two prob-
lems: automatic selection of the optimal kernel and reliable estimation of
the hyperparameters. We propose a fixed composition of kernels, which
contains the components needed to model most time series: linear trend,
periodic patterns, and other flexible kernel for modeling the non-linear
trend. Not all components are necessary to model each time series; during
training the unnecessary components are automatically made irrelevant
via automatic relevance determination (ARD). We moreover assign priors
to the hyperparameters, in order to keep the inference within a plausi-
ble range; we design such priors through an empirical Bayes approach.
We present results on many time series of different types; our GP model
is more accurate than state-of-the-art time series models. Thanks to the
priors, a single restart is enough the estimate the hyperparameters; hence
the model is also fast to train.

1 Introduction

Automatic forecasting [14] is the task of receiving a time series and returning a
probabilistic forecast for the next time steps without any human intervention.
The algorithm should be both accurate and fast, in order to scale on a large
number of time series,

Time series models such as exponential smoothing (ets, [12]) and automated
arima procedures (auto.arima [14]) are strong baselines on monthly and quar-
terly time series, which contain limited number of samples. In these cases they
generally outperform recurrent neural networks [11], which are also much more
time-consuming to train.

Time series which are sampled at higher frequency generally contain multiple
seasonal patterns. For instance, a time series of hourly data typically contains a

2 Corani et al.

daily and a weekly seasonal pattern. This type of time series can be forecasted
with models such as tbats [5] and Prophet [27].

Gaussian Processes (GPs) [21] are a powerful tool for modeling correlated ob-
servations, including time series. The GP provides a prior over functions, which
captures prior beliefs about the function behavior, such as smoothness or pe-
riodicity. Given some observations, the prior is updated to form the posterior
distribution over the functions. Dealing with Gaussian noise, this posterior dis-
tribution is again a GP. The posterior GP is used to predict the value of the
function in points which have yet to be sampled; this prediction is accompanied
by a principled quantification of the uncertainty. GPs have been used for the
analysis of astronomical time series (see [7] and the references therein), forecast-
ing of electric load [17] and analysis of correlated and irregularly-sampled time
series [22].

Within a GP model, the kernel determines which functions are used for curve
fitting. Complex functions can be obtained by summing or multiplying basic
kernels; this is called kernel composition. In some cases the composition can be
based on physical considerations [7] or personal expertise [17]. However algo-
rithms which automatically optimize the kernel composition [6, 19, 15] do not
scale, given the need for training a large number of competing GP models, each
with cubic complexity. Moreover, there is no result showing that this strategy
can forecast as accurately as the best time series models.

Summing up, there are currently no competitive approaches for automatic
forecasting based on Gaussian Processes. In this paper we fill this gap, proposing
a GP model which is accurate, fast to train and suitable for different types of
time series.

We propose a kernel composition which contains useful components for mod-
eling time series: linear trend, periodic patterns, and other flexible kernel for
modeling the non-linear trend. We keep this composition fixed, thus avoiding
kernel search. When dealing with a specific time series, some components might
be unnecessary; during training they are made automatically irrelevant by auto-
matic relevance determination (ARD) [18]. Indeed, ARD yields automatic fea-
ture selection for GPs.

We then consider how to reliably estimate the hyperparameters even on short
time series. We keep their inference within a reasonable range by assigning pri-
ors to them. We define the parameters of such priors by means of a Bayesian
hierarchical model trained on a separate subset of time series.

Extensive results show that our model is very accurate and versatile. It gen-
erally outperforms the state-of-the-art competitors on monthly and quarterly
time series; moreover, it can be easily extended to model time series with double
seasonality. Also in this case, it compares favorably to specialized time series
models. A single restart is enough to sensibly estimate the hyperparameters;
hence the model is also fast to train.

The paper is organized as follows: in Sec.2 we introduce GPs; in Sec.2.2 we
present our kernel composition and the definition of the priors; in Sec. 3 we
present the experiments.

Time series forecasting with Gaussian Processes needs priors 3

2 Gaussian processes

We cast time-series modelling as a regression problem:

y = f(x) + v, (1)

where x ∈ Rp, f : Rp → R and v ∼ N(0, s2v) is the noise. We assume a Gaussian
Process (GP) as a prior distribution about function f :

f ∼ GP (0, kθ),

where kθ denotes the kernel with hyperparameters θ. It is common to adopt the
zero function as a mean function, since a priori we do not know whether at any
point the trend will be below or above the average [22].

The kernel defines the covariance between the value of the function in dif-
ferent locations: Cov(f(x), f(x∗)) = kθ(x,x∗), kθ : Rp × Rp → R+ and thus it
determines which functions are likely under the GP prior.

The most common kernel is the squared exponential, also referred to as radial
basis funcion (RBF):

RBF : kθ(x1, x2) = s2r exp

(
− (x1 − x2)2

2`2r

)
,

whose hyperparameters are the variance s2r and the lengthscale `r. Longer length-
scales yields smoother functions and shorter lengthscales yields wigglier func-
tions. A limit of the RBF kernel is that, once conditioned on the training data,
it does not extrapolate more than ` units away from the observations.

The periodic (PER) kernels yields periodic functions which repeat themselves
exactly. Such function correspond to the sum of infinite Fourier terms [26, 4] and
hence the PER kernel can represent any periodic function. It is defined as:

PER: kθ(x1, x2) = s2p exp

(
− (2 sin2(π|x1 − x2|/pe)

`2p

)
,

where `2p controls the wiggliness of the functions, pe denotes the period and s2p
the variance.

Notice that in general, when the lengthscale of a kernel tends to infinity, or
its variance tends to zero, the kernel yields functions that vary less and less as
a function of x.

The linear kernel, which yields linear functions, is:

LIN : kθ(x1, x2) = s2b + s2l x1x2,

A GP with LIN kernel is equivalent [21] to a Bayesian linear regression.
The white noise (WN) kernel, which is used to represent the noise of the

regression, is:
WN : kθ(x1, x2) = s2vδx1,x2

.

The above expressions are valid for p = 1, which is the case of a univariate
time series; see [21] for the case p>1 and further kernels.

4 Corani et al.

2.1 Kernel compositions

Positive definite kernels (i.e., those which define valid covariance functions) are
closed under addition and multiplication [21]. Hence, complex functions can be
modeled by adding or multiplying simpler kernels; this is called composition.

There are algorithms which iteratively train and compare GPs equipped with
different kernel compositions [6, 19], but they are characterized by large compu-
tational complexity. Even if recent works have made the procedures more scalable
[15, 28], they are still not comparable to lighting-fast time series model.

The spectral mixture kernel [30] allows the GP to fit complex functions with-
out kernel search. It is defined as the sum of Q components, where the i-th
component is:

SMi : kθ(x1, x2) = s2mi
exp

(
− (x1 − x2)2

2`2mi

)
cos

(
x1 − x2
τmi

)
,

with hyperparameters are smi
, `mi

and τmi
. It also corresponds to the product

of a RBF kernel and another kernel called cosine kernel. Estimating the hyper-
parameters of the SM kernel is however challenging: the marginal likelihood is
highly multimodal and it is unclear how to initialize the optimization. In [31]
Bayesian optimization is used for deciding the initialization at each restart. This
is effective but requires quite a few restarts.

2.2 The composition

We propose the following kernel composition:

K = PER + LIN + RBF + SM1 + SM2, (2)

which arguably contains the most important components for forecasting.
The periodic kernel (PER) models the seasonal pattern; for monthly and

quarterly time series, we assume a period of one year and we set pe=1. Time
series with a double seasonality can be modeled by adding a second periodic
kernel, as we do in Sec. 4.

The LIN kernel provides the linear trend. This is an important component:
for instance, auto.arima [14] adds a linear trend (by applying first differences) to
about 40% of the monthly time series of the M3 competition. The RBF and the
two SM kernels are intended to model non-linear trends which might characterize
the time series.

Automatic Relevance Determination Some components of the composition
might be unnecessary when fitting a certain time series: for instance, a time
series might show no seasonal pattern or no linear trend. This is automatically
managed via automatic relevance determination (ARD) [18]. When fitting the
hyperparameters, the unnecessary components are given long lengthscale and/or
small variance; in this way they are made irrelevant within the curve being fitted.

Time series forecasting with Gaussian Processes needs priors 5

2.3 Training strategy

Reliably estimating the hyperparameters of the GP can be challenging (see e.g.
[31]), especially when dealing with small data sets such as monthly and quarterly
time.

We keep the inference of the hyperparameters within a plausible range by as-
signing priors to them. Variances and lengthscales are non-negative parameters,
to which we assign log-normal priors:

s2l , s
2
r, s

2
p, s

2
m1
, s2m2

, s2v ∼ LogN(νs, λs) (3)

`r ∼ LogN(νr, λ`) (4)

`p ∼ LogN(νp, λ`) (5)

`m1 ∼ LogN(νm1 , λ`) (6)

`m2 ∼ LogN(νm2 , λ`) (7)

τm1 ∼ LogN(νt1 , λ`) (8)

τm2 ∼ LogN(νt2 , λ`), (9)

where LogN(ν, λ) denotes the distribution with mean ν and variance λ.

According to Eq.(3), all components share the same prior on the variance.
This assign to every component the same prior probability of being irrelevant,
as a component can be made irrelevant by pushing its variance to zero. We
assign moreover a shared variance λ` to all lengthscales, in order to simplify the
numerical fitting of the hierarchical model described in the next section.

We manage time such that time increases of one unit when one year has
passed. The lengthscales can be readily interpreted; for instance an RBF kernel
with lengthscale of 1.5 years is able to forecast about 1.5 years in the future
before reverting to the prior mean.

Hierarchical GP model To numerically define the priors (3)–(9), we adopt an
empirical Bayes approach. We select a set ofB time series and we fit a hierarchical
GP model to extract distributional information about the hyperparameters. The
hierarchical Bayes model allows learning different models from different related
data sets [8, Chap. 5]. Example of hierarchical GP models, not related to time
series, are given in [16] and [25].

We assume the hyperparameters of the different time series to be drawn from
higher-level priors (hyperprior). For instance the lengthscales of the RBF kernel

(`
(1)
r , `

(2)
r , ..., `

(B)
r) are all drawn from the same hyperprior.

6 Corani et al.

The generative model for the j-th time series is hence:

s
2(j)
l , s2(j)r , s2(j)p , s2(j)m1

, s2(j)m2
, s2(j)v ∼ LogN(νs, λs)

`(j)r ∼ LogN(νr, λ`)

`(j)p ∼ LogN(νp, λl),

`(j)m1
∼ LogN(νm1 , λ`)

`(j)m2
∼ LogN(νm2

, λ`),

τ (j)m1
∼ LogN(ντ1 , λ`)

τ (j)m2
∼ LogN(ντ2 , λ`),

y(j) ∼ N(0,K
(j)
θ (X(j), X(j))),

where K denotes our kernel composition, instantiated with the hyper-parameters
of the j-th time series; θ(j) denotes the hyper-parameters of the j-th time series.

We assign weakly-informative priors to the ν, λ parameters:

νs, νp, νr, νm2
∼ N(0, 5) (10)

νm1
∼ N(−1.5, 5) (11)

λs, λl ∼ Gamma(1, 1). (12)

The lower prior mean for νm1 is helpful for differentiating the estimation of SM1

and SM2 towards shorter-term and longer-term trends respectively.

0 5 10 15 20 25
r

0.000

0.025

0.050

0.075

0.100

0.125

0.150 prior
p(r)
Half-Cauchy(1)

0 5 10 15 20 25 30
r

0.00

0.05

0.10

0.15

0.20

posterior
p(r|Data)
Half-Cauchy(1)

Fig. 1: Left: prior on `r induced by the hierarchical model. Right: posterior on
`r estimated by the hierarchical model using 350 time-series. The Half-Cauchy
distribution (with scale=1) is shown for comparison. In this paper we represent
time such that, when one year has passed, x increases of one unit.

We implemented the model in PyMC3 [24]. We use automatic differentiation
variational inference to approximate the posterior distribution of the ν’s and
λ’s. We fit the hierarchical model on 350 monthly time series from the M3
competition. Before fitting the hierarchical model, we standardize each time

Time series forecasting with Gaussian Processes needs priors 7

series to have mean 0 and variance 1. Moreover, we manage time such that time
increases of one unit when one year has passed.

The priors induced by the hierarchical model have fat tails. Consider for in-
stance the prior induced on `r, which according to Eq.(10) – (12) is: p(`r) =∫∫

LogN(`r; νr, λ`)N(νr; 0, 5)Gamma(λl; 1, 1)dνrdλl. It is shown in the left plot
of Fig.1, and its tails are actually fatter than those of the Half-Cauchy distribu-
tion.

Figure 1(right) shows instead the distribution on `r obtained using the pos-
terior means of νr and λl, estimated by the hierarchical model. This yields a
distribution on `r which we use as prior when fitting the GP. This prior has fat
tails too, see the comparison with the half-Cauchy; nevertheless, it does inform
the optimizer about the order of magnitude of `r. The median and the 95-th
percentile of the prior of each hyperparameter are given in Tab.1.

parameter median 95th ν λ

variance 0.2 1.2 -1.5 1.0
std periodic 1.2 6.3 0.2 1.0
rbf 3.0 15.4 1.1 1.0
SM1 (rbf) 0.5 2.5 -0.7 1.0
SM1 (cos) 1.7 8.6 0.5 1.0
SM2 (rbf) 3.0 15.4 1.1 1.0
SM2 (cos) 5.0 25.8 1.6 1.0

Table 1: Quantiles on the hyperparameters implied by the lognormal priors and
parameters (ν, λ) of the lognormal priors. By design, the λs are equal for all
lengthscales.

The prior on the variance is coherent with the fact that we work with stan-
dardized time series, whose variance is one.

The priors over the lengthscales also yield plausible ranges, every component
having a median lengthscale comprised between 0.5 and 3 years, with long tails
arriving up to 25 years.

All the experiments of this paper are thus computed using the priors of Tab.1.
To remove any danger of overfitting, we remove the 350 time series used to fit
the hierarchical model from our experiments.

Further considerations In the jargon of time series, models which are fitted to a
set of time series are referred to as global models, see for instance [20, 23]. The
hierarchical model is a global model, as it jointly analyzes different time series.
Global models can be more accurate than univariate models, if the time series
are characterized by some common patterns. Yet, they are also more complicated
to fit. In this paper we do not consider global models. We use the hierarchical
model only for defining the priors on the hyperparameters of the GP.

8 Corani et al.

2.4 MAP estimation

We estimate the hyperparameters by computing the maximum a-posteriori (MAP)
estimate of θ, thus approximating the marginal of f∗ with (14). We thus maxi-
mize w.r.t. θ the joint marginal probability of y,θ, which is the product of the
prior p(θ) and the marginal likelihood [21, Ch.2]:

p(y|X,θ) = N(y; 0,Kθ(X,X)). (13)

Using a single restart, MAP estimation is generally accomplished in less than a
second (on a standard computer) on monthly and quarterly time series, yielding
thus quick training times.

2.5 Forecasting

Based on the training data XT = [x1, . . . ,xn], y = [y1, . . . , yn]T , and given m
test inputs (X∗)T = [x∗1, . . . ,x

∗
m] , we wish to find the posterior distribution of

f∗ = [f(x∗1), . . . , f(x∗m)]T .

8 9 10 11
Time (years)

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

va
lu

es

historical

forecast

8 9 10 11
Time (years)

−1

0

1

N
or

m
al

iz
ed

va
lu

es

historical

forecast

8 9 10 11
Time (years)

0

2

N
or

m
al

iz
ed

va
lu

es

historical

forecast

9 10 11 12
Time (years)

−1

0

1

2

N
or

m
al

iz
ed

va
lu

es

historical

forecast

Fig. 2: Examples of GP forecasts on monthly time series, computed up to 18
months ahead.

From (1) and the properties of the Gaussian distribution, 3 the posterior
distribution of f∗ is [21, Sec. 2.2]:

p(f∗|X∗, X,y,θ) = N(f∗; µ̂θ(X∗|X,y), K̂θ(X∗, X∗|X)), (14)

3 In the paper, we incorporate the additive noise v into the kernel by adding a White
noise kernel term.

Time series forecasting with Gaussian Processes needs priors 9

with mean and covariance given by:

µ̂θ(f∗|X,y) = Kθ(X∗, X)(Kθ(X,X))−1y,

K̂θ(X∗, X∗|X) = Kθ(X∗, X∗) (15)

−Kθ(X∗, X)(Kθ(X,X))−1Kθ(X,X∗).

Our kernel composition, trained using the proposed priors, yields sensible
forecasts in very different contexts, as in Fig.2.

3 Experiments

We run experiments on the monthly and quarterly time series of the M1 and M3
competitions, available from the package Mcomp [13] for R. The original 1428
time series of the M3 competition drop to 1078 once we remove the 350 time
series used to fit the hierarchical model. Overall we consider about 959 quarterly
time series (203 from M1, 756 from M3) and 1695 monthly time series (617 from
M1 and 1078 from M3). The test set of monthly time series contains 18 months;
the test set of quarterly time series contains 8 quarters. We standardize each
time series to have mean 0 and variance 1 on the training set.

quarterly monthly

M1 M3 M1 M3

number of time series 203 756 617 1078

median training length 40 44 66 115

Test set length 8 8 18 18

Table 2: Main characteristics of the M1 and M3 data sets.

We denote by GP our model trained with priors and by GP0 our model
trained without priors, i.e., by maximizing the marginal likelihood. We use a
single restart when training both GP and GP0; on these time series, which
contain around 100 observations, the average training is generally less than one
second on a standard laptop.

As competitors we consider auto.arima and ets, both available from the fore-
cast package [12] for R. We tried also Prophet [27], but its accuracy was not
competitive. We thus dropped it; we will consider it later in experiments with
different types of time series.

Indicators

Let us denote by yt and ŷt the actual and the expected value of the time series
at time t; by σ2

t the variance of the forecast at time t; by T the length of the

10 Corani et al.

competition freq score GP ets arima GP0

M1 monthly MAE 0.58 0.59 0.62∗ 0.72∗

M1 monthly CRPS 0.41 0.45∗ 0.45∗ 0.53∗

M1 monthly LL -1.13 -1.27∗ -1.28∗ -1.67∗

M1 quarterly MAE 0.57 0.63∗ 0.62∗ 0.75∗

M1 quarterly CRPS 0.39 0.47∗ 0.44∗ 0.59∗

M1 quarterly LL -1.07 -1.41∗ -1.44∗ -2.66∗

M3 monthly MAE 0.48 0.51∗ 0.51∗ 0.59∗

M3 monthly CRPS 0.35 0.38∗ 0.37∗ 0.42∗

M3 monthly LL -1.01 -1.05∗ -1.06∗ -1.23∗

M3 quarterly MAE 0.42 0.41 0.41 0.54∗

M3 quarterly CRPS 0.30 0.31 0.31 0.40∗

M3 quarterly LL -0.85 -0.90∗ -0.94∗ -1.61∗

Table 3: Median results on M1 and M3 time series.The best-performing model is
boldfaced. Starred results correspond to the GP yielding a significant improve-
ment over the competitor (95%, Bayesian signed-rank test).

test set. The mean absolute error (MAE) on the test set is:

MAE =

T∑
t=1

|yt − ŷt|

The continuous-ranked probability score (CRPS) [9] is a proper scoring rule
which generalizes MAE to probabilistic forecasts. Let us denote by Ft the cu-
mulative predictive distribution at time t and and by z the variable over which
we integrate. The CRPS is:

CRPS(Ft, yt) = −
∫ ∞
−∞

(Ft(z)− 1{z ≥ yt})2dz.

The log-likelihood of the test set (LL) is defined as:

LL =
1

T

(
− 1

2

T∑
t=1

log(2πσ2
t)− 1

2σ2
t

T∑
t=1

(yt − ŷt)2

)
MAE and CRPS are loss functions, hence the lower the better; instead for

LL, the higher the better.

Time series forecasting with Gaussian Processes needs priors 11

In Tab. 3 we report the median results for each indicator and each data set.
In each setting the GP yields the best median on almost all indicators. However
GP0 is instead clearly outperformed by both ets and auto.arima. Hence, our GP
model needs priors on the hyperparameters to produce highly accurate forecasts.

We then check the significance of the differences on the medians via the
Bayesian signed-rank test [3], which is a Bayesian counterpart of the Wilcoxon
signed-rank test. It returns posterior probabilities instead of the p-value. An
advantage of this test over the frequentist one is that we can set a region of
practical equivalence (rope) between the two algorithms being compared. When
comparing algorithms A and B, the test returns three posterior probabilities:
the probability of the two algorithms being practically equivalent, i.e, the prob-
ability of the median difference belonging to the rope; the probability of A being
significantly better than B, and vice versa. As already pointed out, better means
lower MAE, lower CRPS, higher LL. We considered a rope of ±0.01 on each
indicator, similarly to [2]. We consider as significant the differences in which the
probability of an algorithm being better than another is at least 95%. The im-
provement yielded by the GP over the competitors are significant in most cases;
see the starred entries in Tab.3. When the median of some competitor was better
than that of the GP, the difference was not statistically significant.

Fig. 3: Distribution of MAE on the monthly and quarterly time series of the M1
and M3 competition.

The improvement is not only on the medians, but it also involve the distribu-
tion across time series, as shown by the boxplots of MAE (Fig 3). Similar results

12 Corani et al.

hold also for the distribution of the other indicators, which we do not show for
reasons of space.

4 Dealing with multiple seasonalities

We then test the versatility of our GP model, by considering time series with
multiple seasonalities. We consider the electricity data set4, which contains 370
time series regarding electricity demand for different Portoguese households.

Each time series covers the period January 2011 - September 2015 with a
sampling frequency of 15 mins, totaling 140k points. To have a more manageable
data set we aggregate the data to 6-hours steps. We consider a training set
containing of 250 days (1000 points) and a test set of 10.5 days (42 steps).

Such time series have a daily and a weekly seasonal pattern. This can be
addressed by approaches which model seasonality using Fourier terms. For in-
stance TBATS [5] introduces Fourier terms within an exponential smoothing
state space model. Prophet [27] is a decomposable Bayesian time series model,
whose final forecast is the sum of different functions, which account for different
effects. The seasonality function is is modeled by Fourier terms. Prophet however
is not very effective on time series with simpler seasonality, such as monthly and
quarterly time series, as we have already seen.

We adapt the kernel composition by adding a second periodic kernel:

K = PERw + PERd + LIN + RBF + SM1 + SM2,

where PERw and PERd represents respectively the weekly and the daily pattern.
We thus set the period of PERw to 1

52.18 and the period of PERd to 1
(365.25) As

in previous experiments, we standardize time series and one year corresponds to
time increasing of one unit. We can keep unchanged the priors.

GP Tbats Prophet

MAE 0.26 0.30∗ 0.29∗

CRPS 0.19 0.23∗ 0.21∗

LL -0.37 -0.60∗ -0.49∗

Table 4: Median results on the electricy data sets (370 time series). Starred
results imply statistical significance (Bayesian signed rank test).

In table 4 we report the median results across the 370 time series; the GP
delivers the best performance on all indicators. The GP model compares favor-
ably to the competitors also as for the distribution of the MAE (Fig. 4) across
time series.
4 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

Time series forecasting with Gaussian Processes needs priors 13

Fig. 4: MAE Boxplot on the 370 electricity time series.

5 Code

We make available our algorithm from the Python package gpforecast, available
from https://pypi.org/project/gpforecast/. We show examples on how to
call our package from R or from Python. The model is trained with priors and
can be readily applied to any monthly or quarterly time series.

Our implementation is based on the GPy library [10].

6 Conclusions

As far as we know, these are the best results obtained so far in automatic fore-
casting with Gaussian processes. Our model is competitive with the best time
series models on different types of time series: monthly, quarterly and time series
with multiple seasonalities.

The model is fast to train, at least on time series containing less than 500 data
points. Recent computational advances with GPs in time series [26, 1] could allow
the application of our methodology also to time series thousands of observations.

Our GP model yields both good point forecast and a reliable quantification
of the uncertainty, as shown by the CRPS and LL indicators. It is thus an
interesting candidate for problems of hierarchical forecasting [29], which require
forecasts with a sound quantification of the uncertainty.

Due to the general properties of the GP, the model can be learned also from
irregularly sampled or incomplete time series.

References

1. Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D.W., O’Neil, M.:
Fast direct methods for gaussian processes. IEEE transactions on pattern analysis
and machine intelligence 38(2), 252–265 (2015)

2. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial for
comparing multiple classifiers through Bayesian analysis. The Journal of Machine
Learning Research 18(1), 2653–2688 (2017)

14 Corani et al.

3. Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., Ruggeri, F.: A Bayesian
Wilcoxon signed-rank test based on the Dirichlet process. In: Proc. International
Conference on Machine Learning. pp. 1026–1034 (2014)

4. Benavoli, A., Zaffalon, M.: State Space representation of non-stationary Gaussian
processes. arXiv preprint arXiv:1601.01544 (2016)

5. De Livera, A.M., Hyndman, R.J., Snyder, R.D.: Forecasting time series with com-
plex seasonal patterns using exponential smoothing. Journal of the American Sta-
tistical Association 106(496), 1513–1527 (2011)

6. Duvenaud, D., Lloyd, J., Grosse, R., Tenenbaum, J., Zoubin, G.: Structure dis-
covery in nonparametric regression through compositional kernel search. In: Proc.
International Conference on Machine Learning. pp. 1166–1174 (2013)

7. Foreman-Mackey, D., Agol, E., Ambikasaran, S., Angus, R.: Fast and scalable
Gaussian process modeling with applications to astronomical time series. The As-
tronomical Journal 154(6), 220 (2017)

8. Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., Rubin, D.: Bayesian
Data Analysis (3rd ed.). Chapman and Hall/CRC (2013)

9. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estima-
tion. Journal of the American statistical Association 102(477), 359–378 (2007)

10. GPy: GPy: A Gaussian process framework in Python. http://github.com/

SheffieldML/GPy (since 2012)

11. Hewamalage, H., Bergmeir, C., Bandara, K.: Recurrent neural networks for time
series forecasting: Current status and future directions. International Journal of
Forecasting 37(1), 388–427 (2021)

12. Hyndman, R.J. & Athanasopoulos, G.: Forecasting: principles and practice, 2nd
edition,. OTexts: Melbourne, Australia (2018), OTexts.com/fpp2

13. Hyndman, R.: Mcomp: Data from the M-Competitions (2018), https://CRAN.

R-project.org/package=Mcomp, r package version 2.8

14. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast
package for R. Journal of Statistical Software 26(3), 1–22 (2008), http://www.

jstatsoft.org/article/view/v027i03

15. Kim, H., Teh, Y.W.: Scaling up the Automatic Statistician: Scalable structure
discovery using Gaussian processes. In: International Conference on Artificial In-
telligence and Statistics. pp. 575–584. PMLR (2018)

16. Lawrence, N.D., Platt, J.C.: Learning to learn with the informative vector machine.
In: Proceedings of the twenty-first international conference on Machine learning.
p. 65 (2004)

17. Lloyd, J.R.: GEFCom2012 hierarchical load forecasting: Gradient boosting ma-
chines and Gaussian processes. International Journal of Forecasting 30(2), 369–374
(2014)

18. MacKay, D.J.: Introduction to Gaussian processes. NATO ASI Series F Computer
and Systems Sciences 168, 133–166 (1998)

19. Malkomes, G., Schaff, C., Garnett, R.: Bayesian optimization for automated model
selection. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Proceedings of the
Workshop on Automatic Machine Learning. vol. 64, pp. 41–47 (2016)

20. Montero-Manso, P., Athanasopoulos, G., Hyndman, R.J., Talagala, T.S.: Fforma:
Feature-based forecast model averaging. International Journal of Forecasting
36(1), 86–92 (2020)

21. Rasmussen, C., Williams, C.: Gaussian processes for machine learning. Gaussian
Processes for Machine Learning (2006)

Time series forecasting with Gaussian Processes needs priors 15

22. Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., Aigrain, S.: Gaussian
processes for time-series modelling. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 371(1984), 20110550 (2013)

23. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Fore-
casting 36(3), 1181–1191 (2020)

24. Salvatier, J., Wiecki, T.V., Fonnesbeck, C.: Probabilistic programming in Python
using PyMC3. PeerJ Computer Science 2, e55 (2016)

25. Schwaighofer, A., Tresp, V., Yu, K.: Learning gaussian process kernels via hierar-
chical bayes. In: Advances in neural information processing systems. pp. 1209–1216
(2005)

26. Solin, A., Särkkä, S.: Explicit link between periodic covariance functions and state
space models. In: Artificial Intelligence and Statistics. pp. 904–912. PMLR (2014)

27. Taylor, S.J., Letham, B.: Forecasting at scale. The American Statistician 72(1),
37–45 (2018)

28. Teng, T., Chen, J., Zhang, Y., Low, B.K.H.: Scalable variational bayesian ker-
nel selection for sparse gaussian process regression. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 34, pp. 5997–6004 (2020)

29. Wickramasuriya, S.L., Athanasopoulos, G., Hyndman, R.J.: Optimal forecast rec-
onciliation for hierarchical and grouped time series through trace minimization.
Journal of the American Statistical Association 114(526), 804–819 (2019)

30. Wilson, A., Adams, R.: Gaussian process kernels for pattern discovery and extrap-
olation. In: Proc. International Conference on Machine Learning. pp. 1067–1075
(2013)

31. Wu, J., Poloczek, M., Wilson, A.G., Frazier, P.: Bayesian optimization with gra-
dients. In: Advances in Neural Information Processing Systems. pp. 5267–5278
(2017)

