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Abstract. We present a novel approach for reconciling hierarchical fore-
casts, based on Bayes’ rule. We define a prior distribution for the bottom
time series of the hierarchy, based on the bottom base forecasts. Then
we update their distribution via Bayes’ rule, based on the base forecasts
for the upper time series. Under the Gaussian assumption, we derive the
updating in closed-form. We derive two algorithms, which differ as for
the assumed independencies. We discuss their relation with the MinT
reconciliation algorithm and with the Kalman filter, and we compare
them experimentally.

1 Introduction

Often time series are organized into a hierarchy. For example, the total visitors
of a country can be divided into regions and the visitors of each region can
be further divided into sub-regions. The most disaggregated time series of the
hierarchy are referred to as bottom time series, while the remaining time series
are referred to as upper time series.

Forecasts of hierarchical time series should be coherent ; for instance, the sum
of the forecasts of the different regions should equal the forecast for the total.
The forecasts are incoherent if they do not satisfy such constraints. A simple
way for generating coherent forecasts is bottom-up: one takes the forecasts for
the bottom time series and sums them up according to the summing constraints
in order to produce forecasts for the entire hierarchy. Yet this approach does not
consider the forecasts produced for the upper time series, which contain useful
information. For instance, upper time series are smoother and allow to better
estimate of the seasonal patterns and the effect of the covariates.

Thus, modern reconciliation methods [9, 18] proceed in two steps. First, base
forecasts are computed by fitting an independent model to each time series.
Then, the base forecasts are adjusted to become coherent; this step is called
reconciliation. The forecasts for the entire hierarchy are then obtained by summing
up the reconciled bottom time series. Reconciled forecasts are generally more
accurate than the base forecasts, as they benefit from information coming from
multiple time series. The state-of-the art reconciliation algorithm is MinT [18],
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which minimizes the mean squared error of the reconciled forecasts by solving a
generalized least squares problem; its point forecast, besides being coherent, are
generally more accurate than the base forecast.

Hierarchical probabilistic forecasting is however still an open area of research.
The algorithm by [17] constructs a coherent forecast in a bottom-up fashion,
modelling via copulas the joint distribution of the bottom time series, while
[13] proposes a top-down approach, where the top time series is forecasted and
then disaggregated. Both algorithms are based on numerical procedures which
have no closed-form solution; hence they are not easily interpretable. In [6], a
geometric interpretation of the reconciliation process is provided. It is moreover
shown that the log score is not proper with respect to incoherent probabilistic
forecasts. As an alternative, the energy score can be used for comparing reconciled
to unreconciled probabilistic hierarchical forecasts. In [1] multivariate Gaussian
predictive densities and bootstrap densities are experimentally compared for
hierarchical probabilistic forecasting.

We address probabilistic reconciliation using Bayes’ rule. We define the prior
beliefs about the bottom time series, based on the base forecasts for the bottom
time series. We then update them incorporating the information contained in the
forecasts for the upper time series. Under the Gaussian assumption, we compute
the update in closed form, obtaining the posterior distribution about the bottom
time series and then about the entire hierarchy. Our reconciled forecasts minimize
the mean squared error; indeed, we prove that they match the point predictions
of MinT, whose optimality has been proven in a frequentist way. Our algorithm
provides the joint predictive distribution for the hierarchy; thus we call it pMinT,
which stands for probabilistic MinT. We also provide a variant of pMinT, obtained
by making an additional independence assumption; we call it LG, as it is related
to the linear-Gaussian model [3, Chap.8.1.4].

We show a link between the reconciliation problem and the Kalman filter,
opening the possibility of borrowing from the literature of the Kalman filter for
future research. We then compare the algorithms on synthetic and real data sets,
eventually concluding that pMinT yields more accurate probabilistic forecasts
than both bottom-up and LG.

The paper is organized as follows: we introduce the reconciliation problem in
Section 2, we discuss the algorithms in Sec. 3, we discuss the reconciliation of a
simple hierarchy in Section 4 and we present the experiments in Section 5.

2 Time series reconciliation

Fig. 1 shows a hierarchy. We could interpret it as the visitors of a country, which
are disaggregated first by region (R1, R2) and then by sub-regions (R11, R12,
R21, R22). The most disaggregated time series (bottom time series) are shaded.
The hierarchy contains m time series, of which n are bottom time series. We
denote by uppercase letters the random variables and by lowercase letters their
observations. The vector of observations available at time t for the entire hierarchy
is yt ∈ Rm; they are observations from the set of random variables Yt. Vector yt
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Fig. 1: A hierarchical time series which disaggregates the visitors into regions and
sub-regions.

can be broken down in two parts, namely yt = [uTt ,b
T
t ]T ; bt ∈ Rn contains the

observations of the bottom time series while ut ∈ Rm−n contains the observations
of the upper time series. At time t, the observations available for the hierarchy
of Fig. 1 are thus:

yt = [yTotal, yR1
, yR2

, yR11
, yR12

, yR21
, yR22

]T = [uTt ,b
T
t ]T ,

where:

ut = [yTotal, yR1 , yR2 ]T

bt = [yR11
, yR12

, yR21
, yR22

]T .

The structure of the hierarchy is represented by the summing matrix S ∈
Rm×n such that:

yt = Sbt. (1)

The S matrix of hierarchy in Fig.1 is:

S =



1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


=


A

I


, (2)

where the sub-matrix A ∈ R(m−n)×n encodes which bottom time series should
be summed up in order to obtain each upper time series.

We denote by ŷt+h ∈ Rm the base forecasts issued at time t about of y and
referring to h steps ahead. We separate base forecasts for bottom time series
(b̂t+h ∈ Rn) and upper time series (ût+h ∈ Rm−n), namely ŷt+h = [ûTt+h, b̂

T
t+h]T .

The variances of the error of the base forecasts will be used later. If forecasts
for different time horizons are needed (e.g., h=1,2,3,..), the reconciliation is
performed independently for each h. In the following we generically assume to
reconcile the forecasts for h steps ahead.
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The MinT reconciliation Most reconciliation algorithms [9], including MinT [18],

assume the reconciled bottom forecasts (b̃t+h) to be a linear combination of the
base forecasts (ŷt+h) available for the whole hierarchy, i.e. their objective is to
find a matrix Ph ∈ Rn×m such that:

b̃t+h = Phŷt+h. (3)

Let us denote by Êt+h = Yt+h − ŷt+h ∈ Rm the vector of the errors of the

base forecast h-steps ahead and by Wh = E[Êt+h ÊTt+h | It] their covariance
matrix, where It denotes all the information available up to time t. In [18] it is
proven that the reconciliation matrix given by:

Ph = (STW−1
h S)−1STW−1

h (4)

is optimal, in the sense that it minimizes the trace of the reconciliation errors’
covariance matrix. The reconciled forecasts for the whole hierarchy are obtained
by summing the reconciled bottom forecasts, and they are proven to minimize
the mean squared error over the entire hierarchy.

Estimation of Wh Estimating Wh differently for each h is an open problem.
For the case h=1 the estimation is simpler. The variance of the forecasts equals
the variance of the residuals (i.e., the errors on 1-step predictions made on
the training data) and cross-covariances are estimated as the covariance of the
residuals. The best estimates are obtained [18] by shrinking the full covariance
matrix towards a diagonal matrix, using the method of [15].

The case h >1 is instead problematic. The variance of the forecasts are
obtained by increasing the 1-step variance through analytical formulas, which
differ from the variance of the h-steps ahead residuals. Morevoer, the covariances
in Wh have to be numerically estimated by looking at the h-steps residuals.
However, the number of h-steps residuals decreases with h, making the estimate
more noisy.

As a workaround, [18] assumes Wh = khW1, where kh > 0 is an unknown
constant which depends on h while W1 is the covariance matrix of the one-
step ahead errors. The underlying assumption is thus that all terms within the
variance/covariance matrix of the errors grow in the same way with h. The
advantage of this approach is that kh cancels out when computing the reconciled
forecasts, as it can be seen by setting Wh = khW1 in Eq.(4). Yet, kh appears
in the expression of the variance of the reconciled forecasts. In the following we
refer to the assumption Wh = khW1 as “the kh assumption”.

3 Probabilistic Reconciliation

We address the reconciliation problem by merging the probabilistic information
contained in the base forecasts for the bottom and the upper time series. We
perform the fusion using Bayes’ rule.
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We first define the prior about the bottom time series. We have observed the
time series up to time t and we are interested in the reconciled forecasts for time
t + h. We denote by Bt+h the vector of the bottom time series at time t + h;
this is thus a vector of random variables and Bit+h represents its ith element.

We moreover denote by b̂t+h the vector of base forecasts for the bottom time
series for time t+ h, and by bt+h the actual observation of the bottom random
variables at time t + h. Finally, It,b is the information available up to time t
regarding the bottom time series, i.e. the past values of the bottom time series:
It,b = {b1, . . . ,bt}.

In the following we adopt the kh assumption for all the covariance matrices
assuming moreover that, for a given h, the value of kh is shared among all the
involved covariance matrices. As we will show later, this is equivalent to the kh
assumption made by MinT. Let us hence denote the covariance matrix of the
forecast h-steps ahead by Σ̂B,h = khΣ̂B,1. Assuming the bottom time series to
be jointly Gaussian we have:

p(Bt+h | It,b) = N
(
b̂t+h, khΣ̂B,1

)
. (5)

Probabilistic bottom-up If we have no information about the upper time series,
we can build a joint predictive distribution for the entire hierarchy by summing
the bottom forecast via matrix S:

p(Yt+h | It,b) = N
(
Sb̂t+h,SkhΣ̂B,1S

T
)
, (6)

which is a probabilistic bottom-up reconciliation. Note that, in this case, kh
appears only in the expression of the variance.

Updating If the forecasts Ût+h about the upper time series are available, then
we can use them in order to update our prior. We assume:

Ût+h = ABt+h + εut+h, (7)

εut+h ∼ N
(
0, Σ̂U,h

)
,

where Σ̂U,h = khΣ̂U,1 is the covariance of the noise. We thus treat Ût+h as a
set of different sums of the future values of the bottom time series, corrupted by
noise. Hence:

p(Ût+h | Bt+h) = N
(
ABt+h, khΣ̂U,1

)
. (8)

The posterior distribution of the bottom time series is given by Bayes’ rule:

p(Bt+h | It,b, Ût+h) =
p(Bt+h | It,b)p(Ût+h | It,b,Bt+h)

p(Ût+h | It,b)
=

=
p(Bt+h | It,b)p(Ût+h|Bt+h)

p(Ût+h | It,b)
∝

∝ p(Bt+h | It,b)p(Ût+h | Bt+h) =

= p(Bt+h | It,b)p(ABt+h + εut+h | Bt+h) (9)
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3.1 Computing Bayes’ rule

The posterior of Eq. (9) can be computed in closed form by assuming the vector

(Bt+h, Ût+h) to be jointly Gaussian distributed. The linear-Gaussian (LG) model
[3, Chap.8.1.4]. computes analytically the updating by further assuming εut+h
to be independent from Bt+h. Yet this independence might not always hold in
our case. Consider for instance a special event driving upwards most time series.
As a result we would observe both high values of Bt+h and negative values of
εut+h, due to the underestimation of the upper time series. This would result in a
correlation between Bt+h and εut+h.

We thus generalize the LG model by accounting for such correlation. We will
later compare experimentally the results obtained adopting the LG model and
its generalized version. We denote Cov(Bt+1, ε

u
t+1 | It,b) = M1 ∈ Rn×(m−n) and

we assume Cov(Bt+h, ε
u
t+h | It,b) = khM1.

Our first step for computing Bayes’ rule is to express the joint distribution
p(Bt+h, Ût+h | It,b). Since Ût+h = ABt+h + εut+h, the expected values are:

E[Bt+h | It,b] = b̂t+h,

E[Ût+h | It,b] = Ab̂t+h.

We now derive the different blocks of the covariance matrix. The cross-
covariance between Bt+h and Ût+h is:

Cov(Bt+h, Ût+h | It,b) = Cov(Bt+h,ABt+h + εut+h | It,b)

= Cov(Bt+h,Bt+h | It,b)AT + Cov(Bt+h, ε
u
t+h | It,b)

= kh(Σ̂B,1A
T +M1) ∈ Rn×(m−n)

where kh > 0 is the multiplicative constant (Sec.2) that yields the variance of
the forecasts h-steps ahead, given the covariances of the forecasts 1-step ahead.

The covariance of the upper forecasts is:

Cov(Ût+h | It,b) = Cov(ABt+h + εut+h,ABt+h + εut+h | It,b)

= khAΣ̂B,1A
T + khΣ̂U,1 + Cov(ABt+h, ε

u
t+h) + Cov(εut+h,ABt+h)

= kh(AΣ̂B,1A
T + Σ̂U,1 + AM1 + MT

1 A
T ).

Hence the joint prior (i.e., before observing Ût+h) is:

(
Bt+h

Ût+h

)
| It,b ∼ N

[(
b̂t+h

Ab̂t+h

)
,

(
khΣ̂B,1 kh(Σ̂B,1A

T + M1)

kh(AΣ̂B,1 + MT
1 ) kh(AΣ̂B,1A

T + Σ̂U,1 + AM1 + MT
1 A

T )

)]
.

Now we receive the forecast ût+h for the upper time series (recall that Ût+h

denotes the random variables while ût+h denotes observations). We obtain the
posterior distribution for the bottom time series P (Bt+h|ût+h) by applying the
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standard formulas for the conditional distribution of a MVN distribution [12,
Sec.4.3.1]. To have a shorter notation, let us define:

G =
(
kh(Σ̂B,1A

T + M1)
)(

kh(AΣ̂B,1A
T + Σ̂U,1 + AM1 + MT

1 A
T )
)−1

=
(
Σ̂B,1A

T + M1

)(
AΣ̂B,1A

T + Σ̂U,1 + AM1 + MT
1 A

T
)−1

, (10)

where kh disappears from the expression of G.
The reconciled bottom time series have then the following mean and variance:

b̃t+h = E [Bt+h | It,b, ût+h] = b̂t+h + G(ût+h −Ab̂t+h) (11)

Var [Bt+h | It,b, ût+h] = kh

(
Σ̂B,1 −G(AΣ̂B,1 + MT

1 )
)

(12)

Thus the adjustment applied to the base forecasts is proportional to (ût+h −
Ab̂t+h), i.e. the difference between the prior mean and the uncertain observation

(i.e., the forecasts) of the upper time series. The term (ût+h −Ab̂t+h) is called
the incoherence of the base forecasts in [18]. The mean of the reconciled bottom
time series does not depend on kh, while the variance does.

The reconciled point forecast and the covariance for the entire hierarchy are:

E[Y t+h | It,b, ût+h] = ỹt+h = Sb̃t+h (13)

Var [Y t+h | It,b, ût+h] = SVar [Bt+h | It,b, ût+h]ST . (14)

3.2 Related works and optimality of the reconciliation

Bayes’ rule is a well-known tool for information fusion [5, Sec. 2], and we apply it
for the first time for forecast reconciliation. We will later prove that the posterior
mean of our approach yields the same point predictions of MinT.

Yet, our algorithm additionally provides the predictive distribution for the
entire hierarchy; we thus call it pMinT, where p stands for probabilistic. We also
contribute a novel reconciliation approach based on the linear-Gaussian (LG)
model, which is obtained by setting M = 0 in the definition of G. Both pMinT
and LG are thus probabilistic reconciliation algorithms.

We point out for the first time a link between the reconciliation problem
and the Kalman filter, whose state-update equation can be derived from the
linear-Gaussian model [14]. In particular, Equation (11) has the same structure of
the state-update of a Kalman filter. According to the definition of G of Eq.(10),
the LG reconciliation corresponds to the standard Kalman filter [16, Chap.5],
while the pMinT reconciliation corresponds to a generalized Kalman filter which
assumes correlation between the noise of the state and the noise of the output
[16, Chap.7.1]. Thus future research could explore the literature of the Kalman
filter in order to borrow ideas for the reconciliation problem.

The optimality of our approach can be informally proven by considering that it
yields the posterior mean of the reconciled forecasts, which is the minimizer of the
quadratic loss under the Gaussian assumption [12, Chap. 5.7]. Moreover, it has
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the same equation of the state-update step of the Kalman filter, which provably
minimizes the mean squared error of the estimates without any distributional
assumption [16, Chap.5]. In Sec. (4.1) we will moreover show that our point
predictions correspond to those of MinT, which have been proven to be the
minimizer of the mean-squared error.

3.3 The covariance matrices Σ̂B,1 and Σ̂U,1

The element (i, j) of Σ̂B,1 is the covariance Cov(Bit+1, B
j
t+1 | It,b) = Cov(Bit+1, B

j
t+1 |

B1:t = b1:t), where B1:t = b1:t denotes a realization b1:t of B1:t. Yet we only have
one observation of Bit+1, B

j
t+1 conditional on It,b, which prevents estimating the

covariance. We can overcome the problem with the following result, which shows
that we can approximate Σ̂B,1 by computing the covariance of the residuals.

Let us consider the vectors of bottom time series B1, . . . ,Bt and the con-
ditional expectation B̂t+1 = E[Bt+1 | B1, . . . ,Bt] = E[Bt+1 | B1:t]. Note that

B̂t+1 is a random vector as we have not yet observed Bi, i = 1, . . . , t. In this
section we show

E[Cov(Bit+1, B
j
t+1 | B1:t)] = Cov(Eit+1, E

j
t+1) i, j = 1, . . . , n, (15)

where Eit+1 := Bit+1 − B̂it+1, i = 1, . . . , n denotes the residual of the model fitted
on the i-th time series, for the forecast horizon t+ 1. If we observe It,b, then we

can approximate Cov(Bit+1, B
j
t+1 | It,b) with Cov(Bit+1 − b̂it+1, B

j
t+1 − b̂

j
t+1), the

covariance of the residuals of the models fitted on the bottom time series.
Consider now the conditional covariance on the left side of eq. (15), we have

Cov(Bit+1, B
j
t+1 | B1:t) = E

[(
Bit+1 − E[Bit+1 | B1:t]

) (
Bjt+1 − E[Bjt+1 | B1:t]

)
| B1:t

]
= E

[(
Bit+1 − B̂it+1

)(
Bjt+1 − B̂

j
t+1

)
| B1:t

]
By taking the expectation on both sides we obtain

E[Cov(Bit+1, B
j
t+1 | B1:t)] = E

[
E
[(
Bit+1 − B̂it+1

)(
Bjt+1 − B̂

j
t+1

)
| B1:t

]]
= E

[(
Bit+1 − B̂it+1

)(
Bjt+1 − B̂

j
t+1

)]
= Cov

(
Bit+1 − B̂it+1, B

j
t+1 − B̂

j
t+1

)
= Cov

(
Eit+1, E

j
t+1

)
We thus estimate the covariance matrix Σ̂B,1 using the covariance of the

residuals of the models fitted on the bottom time series.

Computation of Σ̂U,1 According to Eq. (7),

εut+1 = ABt+1 − Ût+1,

whose variances and covariances can be readily computed from the residuals.
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4 Reconciliation of a simple hierarchy

We now illustrate how the base forecasts interact during the reconciliation of a
simple hierarchy. We consider a hierarchy constituted by two bottom time series
(B1 and B2) and an upper time series U .

rU r

rB1r rB2 r

The base forecast for the bottom time series are the point forecasts b̂1 and b̂2
with variances σ2

1 and σ2
2 . The prior beliefs about B1 and B2 are:(
B1

B2

)
∼ N

[(
b̂1
b̂2

)
, kh

(
σ2
1 σ1,2

σ1,2 σ
2
2 ,

)]

where for simplicity we remove the forecast horizon (t+ h) from the notation.
The summing matrix is:

S =

1 1
1 0
0 1

 =

A
1 0
0 1

 .
We start considering the simpler case of reconciliation via the LG algorithm.

The matrix G is:

G = Σ̂B,1A
T (Σ̂U,1 + AΣ̂B,1A

T )−1 =
1

σ2
u + σ2

1 + σ2
2 + 2σ1,2

[
σ2
1 + σ1,2

σ2
2 + σ1,2,

]
since A = [1 1], Σ̂U,1 = σ2

u and moreover:

Σ̂B,1A
T = [σ2

1 + σ1,2 σ1,2 + σ2
2 ]T ,

AT Σ̂B,1A = σ2
1 + σ2

2 + 2σ1,2,

Σ̂U,1 + AΣ̂B,1A
T = σ2

u + σ2
1 + σ2

2 + 2σ1,2.

Note that G does not depend on h, as also shown in Eq. (10).
The reconciled bottom forecasts are:

b̃ = b̂ + G(û−Ab̂), (16)

where û is the base forecast for U .
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The reconciled bottom forecast can be written as:

b̃ =

[
b̂1
b̂2

]
+

[
σ2
1 + σ1,2
σ2
2 + σ1,2

]
û−AT b̂

σ2
u + σ2

1 + σ2
2 + 2σ1,2

(17)

Eq. (17) shows that the adjustment applied to the base forecasts depends on σ2
u.

If σ2
u is large the adjustment is small, since the upper forecast is not informative.

If on the contrary σ2
u = 0, the sum of the reconciled bottom forecasts is forced to

match û, i.e., b̃1 + b̃2 = û (this can be shown by re-working Eq. (17)).
We now show that the reconciled bottom forecast are a linear combination of

the base forecasts. Let us define:

g1 =
σ2
1 + σ1,2

σ2
u + σ2

1 + σ2
2 + 2σ1,2

g2 =
σ2
2 + σ1,2

σ2
u + σ2

1 + σ2
2 + 2σ1,2

(18)

After some algebra we obtain:

b̃ =

b̂1 (1− σ2
1+σ1,2

σ2
u+σ

2
1+σ

2
2+2σ1,2

)
+ (û− b̂2)

σ2
1+σ1,2

σ2
u+σ

2
1+σ

2
2+2σ1,2

b̂2

(
1− σ2

2+σ1,2

σ2
u+σ

2
1+σ

2
2+2σ1,2

)
+ (û− b̂1)

σ2
2+σ1,2

σ2
u+σ

2
1+σ

2
2+2σ1,2

 =

[
b̂1 (1− g1) + (û− b̂2)g1
b̂2 (1− g2) + (û− b̂1)g2,

]
(19)

Thus b̃1 is a weighted average of two estimates: b̂1 and (û− b̂2); the weight of

b̂1 decreases with σ2
1 and increases with (σ2

2 + σ2
u).

The reconciliation carried out by pMinT is similar to what already discussed,
once we adopt g∗1 and g∗2 in place of g1 and g2:

g∗1 =
σ2
1 + σ1,2 − σu,1

σ2
u + σ2

1 + σ2
2 + 2σ1,2 − 2σu,1 − 2σu,2

(20)

g∗2 =
σ2
2 + σ1,2 − σu,2

σ2
u + σ2

1 + σ2
2 + 2σ1,2 − 2σu,1 − 2σu,2

(21)

Thus pMinT accounts also for the cross-covariances σu,1, σu,2 between the bottom
time series and of noise affecting the forecasts for the upper time series.

4.1 Relationship with MinT

Our reconciled bottom time series can be written as:

b̃ = b̂ + G(û−Ab̂) = (I−GA)b̂ + Gû

=
[
G (I−GA)

] [û
b̂

]
= Phŷ. (22)

The matrix Ph of pMinT is thus:

PpMinT,h =
[
G (I−GA)

]
(23)

Proposition 1. The matrices Ph of MinT and pMinT are equivalent. The proof
is given in the supplementary material.
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5 Experiments

In this paper we take a probabilistic point of view; we thus assess the reconciled
predictive distributions rather than the point forecasts. Our metric is the energy
score (ES), a scoring rule for multivariate distributions [7]. The ES is the multi-
variate generalization of the continuous ranked probability score (CRPS), which
is obtained by integrating the Brier score over the predictive distribution of the
forecast [7]. Let y be the actual multivariate observation, and let us assume that
we have k samples x1,x2, . . . ,xk, from the multivariate predictive distribution
F . The energy score is:

ES(y, F ) =
1

k

k∑
i=1

‖xi − y‖ − 1

2k2

k∑
i=1

k∑
j=1

‖xi − xj‖ (24)

The energy score is a loss function: the lower, the better. We consider three
methods for probabilistic reconciliation: probabilistic bottom-up (BU), LG and
pMinT. We did not find any package implementing the algorithms of [17, 13];
thus we did not include them in our comparison. We estimate all the covariance
matrices via the shrinkage estimator [15].

Base forecasts We consider two time series models to compute the base forecasts.
The first is ets, which fits different exponential smoothing variants and eventually
performs model selection via AICc. The second method is auto.arima. It first
decides how to differentiate the time series to make it stationary; then, it looks
for the best arma model which fits the stationary time series, performing model
selection via AICc. Both approaches performed well in forecasting competitions;
they are available from the forecast package [10] for R. In all simulations, we
compute forecasts up to h=4. As no particular pattern exists in the relative
performance of the methods as h varies, we present the results averaged over
h=1,2,3,4.

Setting kh We are unaware of previous studies on how to set kh. In this paper
we compare two heuristics, acknowledging that this remains an open problem.
The two options are kh=h and kh=1. The choice kh=h is based on the following
approximation. The variance of ŷt+1 around yt+1 is σ2; assuming the independence
of the errors, the variance of ŷt+1 around yt+h is hσ2. The approximation lies in
the fact that we are modeling the variance of ŷt+1 (not ŷt+h) around yt+h.

Instead, the option kh = 1 keeps the variance fixed with h. This represents
the short-term behavior of models which contain only seasonal terms and no
autoregressive terms. For instance, when dealing with a monthly time series, the
variance of such models is constant up to h=12.

Code The code of our experiments is available at: https://github.com/iamthejao/
BayesianReconciliation.
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Total

r A r

AA AB

r B r

BA BB

5.1 Synthetic data

We generate synthetic data sets using the hierarchy above, previously considered
in the experiments of [18]. We simulate the four bottom time series as AR(1)
processes, drawing their parameters uniformly from the stationary region. The
noises of the bottom time series at each time instant are correlated, multivariate
Gaussian distributed, with mean µ = [0, 0, 0, 0]T and covariance:

Σ =


5 3 2 1
3 5 2 1
2 2 5 3
1 1 3 5

 .
Thus Σ enforces a stronger correlation between time series which have the same
parents. At each time instant t we add the noise ηt ∼ N(0, 10) to the time
series AA and BA and the noise (−ηt) to the time series AB and BB. In this
way we simulate noisy bottom time series (ηt and −ηt cancel out when dealing
with the upper time series) which can be encountered in real cases when several
disaggregations are applied to the total time series. We consider the following
length T of the time series: {50; 100; 1000}. For each value of T we perform 1000
simulations. The averaged energy scores are given in Tab. 1; in each cell we report
the lower energy score between the case kh=h and kh=1.

Since the time series are stationary, they basically fluctuate around their
mean. In this case the magnitude of the incoherence is generally limited, allowing
also the bottom-up reconciliation to be competitive. The ES of both pMinT and
LG is on average 1.5% smaller than that of BU. We also note an advantage of
LG over pMinT for small T , and instead the reverse for large T ; this might be
the effect of the additional covariances estimated by pMinT (see σu,1 and σu,2 in
Sec.4).

5.2 Experiments with real data sets

We consider two hierarchical time series: infantgts and tourism. Both are grouped
time series, which is a generalization of hierarchical time series. In particular the
time series of a given level are always sums of some bottom time series, but they
are not necessarily sums of time series of the adjacent lower level.
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Table 1: Mean energy score, averaged over 1000 simulations and over h=1,2,3,4.
In each row we highlight the lower result.

T method BU pMinT LG

50 arima 9.7 9.5 9.4
50 ets 9.9 9.8 9.7

100 arima 9.1 9.0 9.0
100 ets 9.5 9.4 9.3

1000 arima 8.8 8.7 8.8
1000 ets 9.5 9.3 9.4

Infantgts The infantgts is available within the hts [8] package for R. It contains
infant mortality counts in Australia, disaggregated by sex and by eight different
states. Each time series contains 71 yearly observations, covering the period
1933-2003. The bottom level contains 16 time series (8 states x 2 genders). The
second level contains 2 time series: the counts of males and females, aggregated
over the states. The third level sums males and females in each state, yielding 8
time series (one for each state). The fourth level is the total.

Tourism The tourism data set regards the number of nights spent by Australians
away from home. It is available in raw format from https://robjhyndman.com/

publications/MinT/. The time series cover the period 1998–2016 with monthly
frequency. There are 304 bottom time series, referring to 76 regions and 4 purposes.
The first level sums over the purposes, yielding 76 time series (one for each region);
such values are further aggregated into macro-zones (27 time series) and states
(7 time series). Other levels of the hierarchy aggregate the bottom time series of
the same zone (yielding 108 time series: 27 zones x 4 purposes), which are then
further aggregated into 28 time series (7 states x 4 purposes) and then 4 time
series (4 purposes). The last level is the total. Overall the hierarchy contains 555
time series.

We repeat 50 times the following procedure: split the time series into training
and test, using a different split point; compute the base forecasts up to h=4;
reconcile the forecasts. The reconciliation is independently computed for each h.
Each value of Tab. 2 is thus the average over 200 experiments (50 training/test
splits × h=1,2,3,4). On infantgts, all the three reconciliation methods perform
better with kh = h, probably because the variance of the fitted time series
models steadily increases with h. On the contrary, on tourism all reconciliation
algorithms perform better with kh=1; in this case most models only contain
the seasonal part. The rows referring to the best values of kh are highlighted in
Tab. 2.

We call setup the combination of a data set and a forecasting method, such as
<infangts,arima >. The pMinT algorithm yields the lowest energy score in most
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dset kh method BU pMinT LG

infantgts 1 arima 334.1 346.9 348.5
1 ets 334.0 320.0 334.7
h arima 327.2 335.1 331.0
h ets 328.2 313.7 318.7

tourism 1 arima 2,737.6 2,412.0 2,547.4
1 ets 2,496.0 2,403.7 2,520.1
h arima 2,785.3 2,380.3 2,448.2
h ets 2,527.1 2,353.6 2,410.3

Table 2: Averaged energy scores. Each cell is the average over 200 reconciliations
(50 different training/test splits × h=1,2,3,4) . The rows corresponding to the
best-performing values of kh are highlighted.

setups; in the next section we check whether the differences between methods
are significant.

Statistical analysis For each setup we perform a significance tests for each pair
of algorithms (pMinT vs BU, LG vs BU and pMinT vs LG), using the Bayesian
signed-rank test [2], which returns the posterior probability of a method having
lower median energy score than another (Tab. 3). Such posterior probabilities
are numerically equivalent to (1 - p-value), where p-value is the p-value of the
one-sided frequentist signed-rank test.

In most setups (Tab. 3) high posterior probabilities (implying low p-values)
support the hypothesis of the pMinT having lower energy score than both BU
and LG; moreover they also support the hypothesis of LG having lower energy
score than BU.

Posterior probabilities
dset kh method pMinT <BU pMinT <LG LG <BU

infantgts 1 arima 0.24 0.02 0.47
ets 1.00 0.85 1

h arima 0.89 0.00 1.00
ets 1.00 0.00 1

tourism 1 arima 1.00 1.00 1.00
ets 1.00 1.00 0.25

h arima 1.00 1.00 1.00
ets 1.00 1.00 1.00

Table 3: Posterior probability of the Bayesian signed rank test.
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Meta-analysis We now perform a meta-analysis for for each pair of algorithms
across the different setups, adopting the Poisson-binomial approach [11, 4]. Con-
sider for instance pMinT vs BU. We model each setup as a Bernoulli trial, whose
possible outcomes are the victory of pMinT or BU. The probability of pMinT
winning is taken for each setup from Tab. 3 (the probability of BU winning is
just its complement to 1). We then repeat 10,000 simulations, in which we draw
the outcome of each setup according to the probabilities of Tab. 3.

We now report the probability of each method outperforming another method
in more than half the setups, based on out of 10,000 simulations. Both pMinT and
LG wins in more than half the setup with probability 1 against BU. Moreover,
there is 0.85 probability of pMinT winning in more than half of the setups against
LG. We thus recommend pMinT as a general default method for probabilistic
reconciliation.

6 Conclusions

We have derived two algorithms (pMinT and LG) based on Bayes’ rule for
probabilistic reconciliation. We have also shown a didactic example which clarifies
how base forecast and their variances interact during the reconciliation, In
general pMinT yields better predictive distributions and thus we recommend
it as a default. The LG method can be anyway an interesting alternative when
dealing with small sample sizes. Future research could borrow ideas from the
extensive literature of the Kalman filter, based on the link we pointed out between
reconciliation and Kalman filter
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