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Abstract Usually one compares the accuracy of two competing classifiers using null hypothesis
significance tests (nhst). Yet the nhst tests suffer from important shortcomings, which can be
overcome by switching to Bayesian hypothesis testing. We propose a Bayesian hierarchical model
that jointly analyzes the cross-validation results obtained by two classifiers on multiple data sets.
The model estimates more accurately the difference between classifiers on the individual data sets
than the traditional approach of averaging, independently on each data set, the cross-validation
results. It does so by jointly analyzing the results obtained on all data sets, and applying shrinkage
to the estimates. The model eventually returns the posterior probability of the accuracies of the
two classifiers being practically equivalent or significantly different.

1 Introduction

The statistical comparison of learning algorithms is fundamental in machine learning; it is typically
carried out through hypothesis testing. In this paper we assume that one is interested in comparing
the accuracy of two learning algorithms for classification (referred to as classifiers in the following).
However our discussion readily applies to any other measure of performance.

Assume that two classifiers have been assessed via cross-validation on a single data set. The
recommended approach for comparing them is the correlated t-test (Nadeau & Bengio, 2003). If
instead one aims at comparing two classifiers on multiple data sets the recommended test is the
signed-rank test (Demšar, 2006). Both tests are based on the frequentist framework of the null-
hypothesis significance tests (nhst), which has severe drawbacks.

First, the nhst computes the probability of getting the observed (or a larger) difference in the
data if the null hypothesis was true. It does not compute the probability of interest, which is the
probability of one classifier being more accurate than another given the observed results.

Second, the claimed statistical significances do not necessarily imply practical significance, since
null hypotheses can be easily rejected by increasing the number of observations (Wasserstein &
Lazar, 2016). Thus for instance the signed-rank can reject the null hypothesis when dealing with
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two classifiers whose accuracies are nearly equal, but which have been compared on a large number
of data sets.

Third, when the null hypothesis is not rejected, we cannot assume the null hypothesis to be
true (Kruschke, 2015, Chap. 11). Thus nhst tests cannot recognize equivalent classifiers.

These issues can be overcome by switching to Bayesian hypothesis testing (Kruschke, 2015,
Sec. 11), which are recently being applied also in machine learning (Lacoste et al., 2012; Corani &
Benavoli, 2015; Benavoli et al., under review).

Let us denote by δi the actual difference of accuracy between the two classifiers on the i-th
data set. Usually δi is estimated via cross-validation. We propose the first model that represents
both the distribution p(δi) across the different data sets and the distribution of the cross-validation
results on the i-th data set given δi.

Following Kruschke (2013) we analyze the results by adopting a region of practical equivalence
(rope). In particular we consider two classifiers to be practically equivalent if their difference of
accuracy belongs to the interval (−0.01, 0.01). This mitigates the risk of claiming significance be-
cause of a thin difference of accuracy in simulation, which is likely to be swamped by other sources
of uncertainty when the classifier is adopted in practice (Hand et al., 2006). There are however
no correct rope limits; thus other researchers might set the rope differently. Based on the rope we
compute the posterior probability of the two classifiers being practically equivalent or significantly
different. Such probabilities convey meaningfully information even when they do not exceed the
95% threshold: this is a more informative outcome than that of a nhst.

Moreover, the hierarchical model estimates the δi’s more accurately than the traditional ap-
proach of computing, independently on each data set, the mean of the cross-validation differences. It
does so by jointly estimating the δi’s and shrinking them towards each other. We prove theoretically
that such shrinkage yields lower estimation error than the traditional approach.

2 Existing approaches

Let us introduce some notation. We have a collection of q data sets; the actual mean difference of
accuracy between the two classifiers on the i-th data set is δi. We can think of δi as the average
difference of accuracy that we would obtain by repeating many times the procedure of sampling
from the actual distribution as many instances as there are in the actually available data set, train
the two classifiers and measure the difference of accuracy on a large test set.

Usually δi is estimated via cross-validation. Assume that we have performed m runs of k-
fold cross-validation on each data set, using the same folds for both classifiers. The differences of

accuracy on each fold of cross-validation are xi = {xi1, xi2, . . . , xin}, where n = mk. The mean
and the standard deviation of the results on the i-th data set are x̄i and si. The mean of the
cross-validation results is also the maximum likelihood estimator (MLE) of δi.

The values xi = {xi1, xi2, . . . , xin} are correlated because of the overlapping training sets built
during cross-validation. In particular, there is a) correlation among folds within the same run of
cross-validation and b) correlation among folds from different cross-validation runs. Nadeau &
Bengio (2003) proposed ρ = 1

k (k is the number of folds) as an approximated estimation of the
correlation when repeated random train/test splits are adopted. This validation method is slightly
different from cross-validation, but such heuristic is generally used (Witten et al., 2011, Chap.
5.5) also for the modeling the correlations (a) and (b) of cross-validation, given the lack of better
options. The statistic of the correlated t-test is thus:

t = xi/

√
ŝ2i (

1

n
+

ρ

1− ρ ). (1)

The denominator of the statistic is the standard error, which is informative about the accuracy of
x̄i as an estimator of δi. The standard error of the correlated t-test accounts for the correlation of
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cross-validation results. The statistic of Eqn.(1) follows a t distribution with n-1 degrees of freedom.
When the statistic exceeds the critical value, the test claims δi to be significantly different from
zero. This is the standard approach for comparing two classifiers on a single data set.

The signed-rank test is instead the recommended method (Demšar, 2006) to compare two
classifiers on a collection of q different data sets. It is usually applied after having performed cross-
validation on each data set. The test analyzes the mean differences measured on each data set
(x̄1, x̄2, . . . , x̄q) assuming them to be i.i.d.. This is a simplistic assumption: the x̄i’s are not i.i.d.
since they are characterized by different uncertainty; indeed their standard errors are typically
different.

The test statistic is:
T+ =

∑
{i: x̄i≥0}

ri(|x̄i|) =
∑

1≤i≤j≤n
T+
ij ,

where ri(|x̄i|) is the rank of |x̄i| and

T+
ij =

{
1 if x̄i ≥ x̄j ,
0 otherwise.

For a large enough number of samples (e.g., q>10), the statistic under the null hypothesis is normally
distributed. When the test rejects the null hypothesis, it claims that the median of the population
of the δi’s is different from zero.

The two tests discussed so far are null-hypothesis significance test (nhst) and as such they suffer
from the drawbacks discussed in the Introduction.

Let us now consider the Bayesian approaches. Kruschke (2013) presents a Bayesian t-test for
i.i.d. observations, which is thus not suitable for analyzing the correlated cross-validation results.
The Bayesian correlated t-test (Corani & Benavoli, 2015) is instead suitable. It computes the
posterior distribution of δi on a single data set, assuming the cross-validation observations to be
sampled from a multivariate normal distribution whose components have the same mean δi, the
same standard deviation σi and are equally cross-correlated with correlation ρ = 1

k .
As for the analysis of multiple data sets, Lacoste et al. (2012) models each data set as an

independent Bernoulli trial. The two possible outcomes of the Bernoulli trial are the first classifier
being more accurate than the second or vice versa. This approach yields the posterior probability
of the first classifier being more accurate than the second classifier on more than half of the q

data sets. A shortcoming is that its conclusions apply only to the q available data sets without
generalizing to the whole population of data sets.

3 The hierarchical model

We propose a Bayesian hierarchical model for comparing two classifiers. Its core assumptions are:

δ1, ..., δq ∼ t(δ0, σ0, ν), (2)

σ1, ..., σq ∼ unif(0, σ̄), (3)

xi ∼MVN(1δi,Σi). (4)

The i-th data set is characterized by the mean difference of accuracy δi and the standard
deviation σi. Thus we model each data set as having its own estimation uncertainty. Notice that
instead the signed-rank test simplistically assumes the x̄i’s to be i.i.d.

The δi’s are assumed to be drawn from a Student distribution with mean δ0, scale factor σ0 and
degrees of freedom ν. The Student distribution is more flexible than the Gaussian, thanks to the
additional parameter ν. When ν is small, the Student distribution has heavy tails; when ν is above
30, the Student distribution is practically a Gaussian. A Student distribution with low degrees of
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freedom robustly deals with outliers and for this reason is often used for robust Bayesian estimation
(Kruschke, 2013).

We assume σi to be drawn from a uniform distribution over the interval (0, σ̄). This prior
(Gelman, 2006) yields inferences which are insensitive to the value of σ̄ if σ̄ is large enough. We
adopt σ̄ = 1000s̄, where s̄ is the mean standard deviation observed on the different data sets
(s̄ =

∑q
i si/q).

Equation (4) models the fact that the cross-validation measures xi = {xi1, xi2, . . . , xin} of the
i-th data set are generated from a multivariate normal whose components have the same mean
(δi), the same standard deviation (σi) and are equally cross-correlated with correlation ρ. Thus the
covariance matrix Σi is patterned as follows: each diagonal elements equals σ2

i ; each non-diagonal
element equals ρσ2

i . Such assumptions are borrowed from the Bayesian correlated t-test (Corani &
Benavoli, 2015).

We complete the model with the prior on the parameters δ0, σ0 and ν of the high-level distri-
bution. We assume δ0 to be uniformly distributed within 1 and -1. This choice works for all the
measures bounded within ±1, such as accuracy, AUC, precision and recall. Other type of indicators
might require different bounds.

For the standard deviation σ0 we adopt the prior unif(0, s̄0), with s̄0 = 1000sx̄, where sx̄ is the
standard deviation of the x̄i’s.

As for the prior p(ν) on the degrees of freedom, there are two proposals in the literature.
Kruschke (2013) proposes an exponentially shaped distribution which balances the prior probability
of nearly normal distributions (ν >30) and heavy tailed distributions (ν <30). We re-parameterize
this distribution as a Gamma(α,β) with α=1, β= 0.0345. Juárez & Steel (2010) proposes instead
p(ν) = Gamma(2, 0.1), assigning larger prior probability to normal distributions, as shown in Tab. 1.

We have no reason for preferring a prior over another, but the hierarchical model shows some
sensitivity on the choice of p(ν). We model this uncertainty by representing the coefficients α and
β of the Gamma distribution as two random variables (hierarchical prior). In particular we assume
p(ν) = Gamma(α, β), with α ∼ unif(α, ᾱ) and β ∼ unif(β, β̄), setting α=0.5, ᾱ=5, β=0.05, β̄=0.15.
The mean and standard deviation of the limiting Gamma distribution are given in Table 1; they
encompass a wide range of different prior beliefs. In this way the model becomes more stable,
showing only minor variations when the limiting ranges of α and β are modified. Being more
expressive it also fits better the data as we show in the experimental section.

α β mean sd p(ν <30)

Juárez & Steel (2010) 2 0.1 20 14 0.80
Kruschke (2013) 1 0.0345 29 29 0.64

0.5 0.05 10 14 0.92
0.5 0.15 3 5 0.99

5 0.05 100 45 0.02
5 0.15 33 15 0.47

Table 1 Characteristics of the Gamma distribution for different values of α and β. The last four rows show the
characteristic of the extreme distributions assumed by our hierarchical model. The hierarchical model however
contains all the priors corresponding to intermediate values of α and β.
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The priors for the parameters of the high-level distribution are thus:

δ0 ∼ unif(−1, 1),

σ0 ∼ unif(0, σ̄0),

ν ∼ Gamma(α, β),

α ∼ unif(α, ᾱ),

β ∼ unif(β, β̄).

3.1 The region of practical equivalence

Our knowledge about a parameter is fully represented by the posterior distribution. Yet it is handy
to summarize the posterior in order to take decisions. In (Corani & Benavoli, 2015) we summarized
the posterior distribution by reporting the probability of positiveness and negativeness; however in
this way we considered only the sign of the differences, neglecting their magnitude.

A more informative summary of the posterior is obtained introducing a region of practical
equivalence (rope), constituted by a range of parameter values that are practically equivalent to
the null difference between the two classifiers. We thus summarize the posterior distribution by
reporting how much probability lies within the rope, at its left and at its right. The limits of the
rope are established by the analyst based on his experience; thus there are no uniquely correct limits
for the rope (Kruschke, 2015, Chap. 12). In this paper we consider two classifiers to be practically
equivalent if their mean difference of accuracy lies within (-0.01,0.01).

The rope yields a realistic null hypothesis that can be verified. If a large mass of posterior
probability lies within the rope, we claim the two classifiers to be practically equivalent. A sound
approach to detect equivalent classifiers could be very useful in online model selection (Krueger
et al., 2015) where one should quickly discard algorithms that are practically equivalent.

3.2 The inference of the test

We focus on estimating the posterior distribution of the difference of accuracy between the two
classifiers on a future unseen data set. We compute the probability of left, rope and right being the
most probable outcome on the next data set.

Thus we compute the probability by which p(left) > max(p(rope), p(right)) or p(right) >

max(p(rope), p(left)) or p(rope) > max(p(left), p(right)). This is similar to the inference carried
out by the Bayesian signed-rank test (Benavoli et al., 2014).

To compute such inference, we proceed as follows:

1. initialize the counters nleft = nrope = nright = 0;
2. for i = 1, 2, 3, . . . , Ns repeat

– sample µ0, σ0, ν from their posteriors;
– define the posterior of the mean difference accuracy on the next dataset, i.e., t(δnext; δ0, σ0, ν);
– from t(δnext; δ0, σ0, ν) compute the three probabilities p(left) (integral on (−∞, r])), p(rope)

(integral on [−r, r]) and p(right) (integral on [r,∞); notice that −r and r denote the lower
and upper bound of the rope);

– determine the highest among p(left), p(rope), p(right) and increment the respective counter
nleft, nrope, nright;

3. compute P (left) = nleft/Ns, P (rope) = nrope/Ns and P (right) = nright/Ns;
4. decision: when P (rope) > 1 − α (α is the size of the test) declare the two classifiers to be

practically equivalent ; when P (left) > 1−α or P (right) > 1−α, declare the two classifiers to be
significantly different.
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3.3 The shrinkage estimator

The δi’s of the hierarchical model are independent given the parameters of the higher-level distribu-
tion. If such parameters were known, the δi’s would be conditionally independent and they would
be independently estimated. Instead such parameters are unknown, causing the δ0 and the δi’s to
be jointly estimated. The hierarchical model jointly estimates the δi’s by applying shrinkage to the
x̄i’s, namely it pulls the estimates close to each other. It is known that the shrinkage estimator
achieves a lower error than MLE in case of uncorrelated data; see (Murphy, 2012, Sec 6.3.3.2) and
the references therein. However there is currently no analysis of shrinkage with correlated data,
such as those yielded by cross-validation. We study this problem in the following.

To this end, we assume the cross-validation results on the q data sets to be generated by the
hierarchical model:

δi ∼ p(δi),
xi ∼MVN(1δi,Σ), (5)

where for simplicity we assumed the variances σ2
i of the individual data sets to be equal to σ2

and known. Thus all data sets have the same covariance matrix Σ, which is defined as follows: all
variances are σ2 and all correlations equal ρ. Note that Eqn. (5) coincides with (4). This is a general
model that makes no assumptions about the distribution p(δi). We denote the first two moments
of p(δi) as E[δi] = δ0 and Var[δi] = σ2

0 .
We study the MAP estimates of the parameters δ1, . . . , δm, δo, σ

2
o , which asymptotically tend to

the Bayesian estimates. A hierarchical model is being fitted to the data. Such model is a simplified
version of that presented in Sec. 3. In particular p(δi) is Gaussian for analytical tractability.

P (x̄, δ, δ0, σ
2
0) =

q∏
i=1

N(xi; 1δi,Σ)N(δi; δo, σ
2
o)p(δo, σ

2
o). (6)

This model is misspecified since p(δi) is generally not Gaussian. Nevertheless, it correctly estimates
the mean and variance of p(δi), as we show in the following.

Proposition 1 The derivatives of the logarithm of P (x̄, δ, δ0, σ
2
0) are:

d

dδi
ln(P (·)) =

δo − δi
σ2
o

+
x̄i − δi
σ2
n

,

d

dδo
ln(P (·)) =

−qδo +
q∑
i=1

δi

σ2
o

+
d

dδo
ln(p(δo, σ

2
o)),

d

dσo
ln(P (·)) =

qδ2
o +

q∑
i=1

δ2
i − 2δo

q∑
i=1

δi − qσ2
o

σ3
o

+
d

dσo
ln(p(δo, σ

2
o)).

If we further assume that p(δo, σ
2
o) ≈ constant (flat prior), by equating the derivatives to zero, we

derive the following consistent estimators:

σ2
o =

1

q

q∑
i=1

(δ̂i − δ̂o)2, (7)

δ̂i =

σ̂2
o x̄i + σ2

n
1
q

q∑
i=1

x̄i

σ̂2
o + σ2

n
= wx̄i + (1− w)1

q

q∑
i=1

x̄i, (8)

where w = σ̂2
o/(σ̂

2
o + σ2

n) and, to keep a simple notation, we have not explicited the expression σ̂o
as a function of x̄i, σ

2
n. Notice that the estimator δ̂i shrinks the estimate towards 1

q

∑q
i=1 x̄i that
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is an estimate of δ0. Hence, the Bayesian hierarchical model consistently estimates δ0 and σ2
0 from

data and converges to the shrinkage estimator δ̂i(xi) = wx̄i + (1− w)δ0.
Consider the generative model (5). The likelihood regarding the i-th data set is:

p(xi|δi,Σ) = N(xi; 1δi,Σ) =
exp(−1

2 (xi − 1δi)
TΣ−1(xi − 1δi))

(2π)n/2
√
|Σ|

. (9)

Let us denote by δ the vector of the δi’s. The joint probability of data and parameters is:

P (δ,x1, . . . ,xq) =
q∏
i=1

N(xi; 1δi,Σ)p(δi).

Let us focus on the i-th group, denoting by δ̂i(xi) an estimator of δi. The mean squared error
(MSE) of the estimator w.r.t. the true joint model P (δi,xi) is:∫∫ (

δi − δ̂i(xi)
)2
N(xi; 1δi,Σ)p(δi)dxidδi. (10)

Proposition 2 The MSE of the maximum likelihood estimator is:

MSEMLE =

∫∫
(δi − x̄i)2

N(xi; 1δi,Σ)p(δi)dxidδi

=
1

n2
1TΣ1,

which we denote in the following also as σ2
n = 1

n2 1TΣ1.

Now consider the shrinkage estimator δ̂i(xi) = wx̄i+(1−w)δ0 with w ∈ (0, 1), which pulls the MLE
estimate x̄i towards the mean δ0 of the upper-level distribution.

Proposition 3 The MSE of the shrinkage estimator is:

MSESHR =

∫∫
(δi − wx̄i − (1− w)δ0)

2
N(xi; 1δi,Σ)p(δi)dxidδi

= w2σ2
n + (1− w)2σ2

0 .

As we have seen, the hierarchical model converges to the shrinkage estimator with w = σ2
0/(σ

2
0 +σ2

n).
The shrinkage estimator achieves a smaller mean squared error than the MLE since:

MSESHR = w2σ2
n + (1− w)2σ2

0 =
σ4

0 + σ2
nσ

2
0

(σ2
0 + σ2

n)2
σ2
n

=
σ2

0

(σ2
0 + σ2

n)
σ2
n < σ2

n = MSEMLE.

3.4 Implementation and code availability

We implemented the hierarchical model in Stan (Carpenter et al., 2017), a language for Bayesian
inference. In order to improve the computational efficiency, we exploit a quadratic matrix form to
compute simultaneously the likelihood of the q data sets. This provides a speedup of about one
order of magnitude compared to the naive implementation in which the likelihoods are computed
separately on each data set. Inferring the hierarchical model on the results of 10 runs of 10-folds
cross-validation on 50 data sets (a total of 5000 observations) takes about three minutes on a
standard laptop. For the sake of completeness we recall that the computation of the much simpler
signed-rank test is instead immediate.

The Stan code is available from https://github.com/BayesianTestsML/tutorial/tree/master/

hierarchical. The same repository provides the R code of all the simulations of Sec. 4.
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4 Experiments

4.1 Estimation of the δi’s under misspecification of p(δi)

According to the proofs of Sec. 3, the shrinkage estimator of the δi’s has lower mean squared error
than the maximum likelihood estimator, constituted by the arithmetic mean of the cross-validation
results. This result holds even if the p(δi) of the hierarchical model is misspecified: it only requires
the hierarchical model to reliably estimate the first two moments of p(δi).

To verify this theoretical result we design the following experiment. We consider these numbers
of data sets: q = {5, 10, 50}. For each value of q we repeat 500 experiments consisting of:

– sampling of the δi’s (δ1, δ2, . . . , δq) from the bimodal mixture

p(δi) = π1N(δi|µ1, σ1) + π2N(δi|µ2, σ2),

with k=2, µ1=0.005, µ2=0.02, σ1=σ2=σ=0.001, π1 = π2 = 0.5.
– For each δi:

– implement two classifiers whose actual difference of accuracy is δi, following the procedure
given in Appendix;

– perform 10 runs of 10-folds cross-validation with the two classifiers;
– measure the mean of the cross-validation results x̄i (MLE).

– infer the hierarchical model using the results referring to the q data sets;
– obtain the shrinkage estimates of each δi;
– measure MSEMLE and MSESHR as defined in Sec. 3.3.

q Mean Squared Error
MLE Shrinkage

5 .00036 .00017
10 .00036 .00014
50 .00036 .00012

Table 2 Estimation error of the δi’s.

As reported in Tab. 2, MSESHR is at least 50% lower than MSEMLE for every value of q. This
confirms our theoretical findings. It also shows that the mean of the cross-validation estimates is a
quite noisy estimator of δi, even if 10 repetitions of cross-validation are performed. The problem is
that all such results are correlated and thus they have limited informative content.

Interestingly, the MSE of the shrinkage estimator decreases with q. Thus the presence of more
data sets allows to better estimate the moments of p(δi), improving the shrinkage estimates as
well. Instead the error of the MLE does not vary with q since the parameters of each data set are
independently estimated.

4.2 Comparison of equivalent classifiers

In this section we adopt a Cauchy distribution as p(δi); this is an idealized situation in which the
hierarchical model can recover the actual p(δi). We will relax this assumption in Sec. 4.7.

We simulate the null hypothesis of the signed-rank test by setting the median of the Cauchy to
δ0 = 0. We set the scale factor of the distribution to 1/6 of the rope length; this implies that 80%
of the sampled δi’s lies within the rope, which is the most probable outcome.

We consider the following numbers of data sets: q = {10, 20, 30, 40, 50}. For each value of q we
repeat 500 experiments consisting of:
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– sampling the δi’s (δ1, δ2, . . . , δq) from p(δi);
– for each δi:

– implement two classifiers whose actual difference of accuracy is δi, following the procedure
given in Appendix;

– perform 10 runs of 10-fold cross-validation with the two classifiers;
– analyze the results through the signed-rank and the hierarchical model.

The signed-rank test (α=0.05) rejects the null hypothesis about 5% of the times for each value
of q. It is thus correctly calibrated. Yet, it provides no valuable insights. When it does not reject
H0 (95% of the times), it does not allow claiming that the null hypothesis is true. When it rejects
the null (5% of the times), it draws a wrong conclusion since δ0=0.

The hierarchical model draws more sensible conclusions. The posterior probability p(rope) in-
creases with q (Fig. 1): the presence of more data sets provides more evidence that they are
equivalent. For q=50 (the typical size of a machine learning study), the average p(rope) reported in
simulations is larger than 90%. Fig. 1 shows also the equivalence recognition, which is the proportion
of simulations in which p(rope) exceeds 95%. Equivalence recognition increases with q, reaching
about 0.7 for q=50.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of data sets (q)

Hierarchical test
Simulated case: δ0 : 0

p(rope)

equiv. recognition (95%)

Fig. 1 Behavior of the hierarchical classifier when dealing with two actually equivalent classifiers.

Moreover in our simulations the hierarchical model never estimated p(left)>95% or p(right)>95%,
so it made no Type I errors. In fact nsht commits a rate α of Type I errors under the null hypothesis,
while Bayesian estimation with rope typically makes less Type I errors (Kruschke, 2013).

Running the signed-rank twice? We cannot detect practically equivalent classifiers by running
twice the signed-rank test, e.g., once with null hypothesis δ0 =0.01 and once with the null hypothesis
δ0 =-0.01. Even if the signed-rank test does not reject the null in both cases, we still cannot affirm
that the two classifiers are equivalent, since non-rejection of the null does not allow claiming that
the null is true.

4.3 Comparison of practically equivalent classifiers

We now simulate two classifiers whose actual difference of accuracy is practically irrelevant but
different from zero. We consider two classifiers whose average difference is δ0=0.005, thus within
the rope.

We consider q = {10, 20, 30, 40, 50}. For each value of q we repeat 500 experiments as follows:

– set p(δi) as a Cauchy distribution with δ0=0.005 and the same scale factor as in previous
experiments (the rope remains the most probable outcome for the sampled δi’s);

– sample the δi’s (δ1, δ2, . . . , δq) from p(δi);
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– implement for each δi two classifiers whose actual difference of accuracy is δi and perform 10
runs of 10-fold cross-validation;

– analyze the cross-validation results through the signed-rank and the hierarchical model.

The signed-ranked test is more likely to reject the null hypothesis as the number of data sets
increases (Fig. 2). When 50 data sets are available, the signed-rank rejects the null in about 25% of
the simulations, despite the trivial difference between the two classifiers. Indeed one can reject the
null of the signed-rank test when comparing two almost equivalent classifiers, by comparing them
on enough data sets. As reported in the ASA statement on p-value (Wasserstein & Lazar, 2016),
even a tiny effect can produce a small p-value if the sample size is large enough.

10 20 30 40 50
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Number of data sets (q)

R
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0
(%

)
si

g
n

ed
-r

a
n

k
te

st

Actual δ0: 0.005

Fig. 2 When faced with two practically equivalent classifiers, the signed-rank rejects more often H0 as q increases.

10 20 30 40 50
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Fig. 3 When faced with two practically equivalent classifiers, the hierarchical test responds to an increase of q
by increasing the probability of rope.

The behavior of the hierarchical test is way more sensible. The hierarchical test increases the
posterior probability of rope (Fig. 3) when the number of data sets in which the classifiers show
similar performance increases. It is slightly less effective in recognizing equivalence than in the pre-
vious experiment since δ0 is now closer to the limit of the rope. When q=50, it declares equivalence
detection with 95% confidence in about 40% of the simulated cases.

The hierarchical test thus effectively detects classifiers that are practically equivalent; this is
instead impossible for the signed-rank test.

The hierarchical model is more conservative as it rejects the null hypothesis less easily than
the signed rank test. The price to be paid is that it might be less powerful at claiming significance
when comparing two classifiers whose accuracies are truly different. We investigate this setting in
the next section.
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4.4 Simulation of practically different classifiers
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Fig. 4 The signed-rank test is generally more powerful than the hierarchical test in the detection of significant
differences between classifiers. Yet the two tests have similar power when δ0 is far enough from the rope.

We now simulate two classifiers which are significantly different. We consider different values of
δ0: {0.015, 0.02, 0.025, 0.03}. We set the scale factor of the Cauchy to σ0=0.01 and the number of
data sets to q=50.

We repeat 500 experiments for each value of δ0, as in the previous sections. We then check
the power of the two tests for each value of δ0. The power of the signed-rank is the proportion of
simulations in which it rejects the null hypothesis (α=0.05). The power of the hierarchical test is
the proportion of simulations in which it estimates p(right)>0.95.

As expected, the signed-rank test is indeed more powerful in this setting than the hierarchical
model, especially when δ0 lies just slightly outside the rope (Fig. 4). The two tests have however
similar power when δ0 is larger than 0.02.

4.5 Discussion

The main experimental findings so far are as follows. First, the shrinkage estimator of the δi’s yields
a lower mean squared error than the MLE estimator, even under misspecification of p(δi).

Second, the hierarchical model effectively detects equivalent classifiers, unlike the nhst test.

However, it is also less powerful than the signed-rank when comparing two significantly differ-
ent classifiers. The difference in power is however not necessarily large, as shown in the previous
simulation.

In the next section we discuss how the probabilities returned by the hierarchical model can be
interpreted in a more meaningful way than simply checking if they are larger than 1-α.

4.6 Interpreting posterior odds

The ratio of posterior probabilities (posterior odds) shows the extent to which the data support one
hypothesis over the other. For instance we can compare the support for left and right by computing
the posterior odds o(left, right) = p(left)

p(right) . When o(left, right) > 1 there is evidence in favor of left;

when o(left, right) < 1 there is evidence in favor of right. Rules of thumb for interpreting the amount
of evidence corresponding to posterior odds are discussed by Raftery (1995) and summarized in
Tab. 3:
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Posterior Odds Evidence

1–3 weak
3–20 positive
>20 strong

Table 3 Grades of evidence corresponding to posterior odds.

Thus even if none of the three probabilities exceeds the 95% threshold, we can still draw
meaningful conclusions by interpreting the posterior odds. We will adopt this approach in the
following simulations.

The p-values cannot be interpreted in a similar fashion, since they are affected both by sample
size and effect size. In particular (Wasserstein & Lazar, 2016) show that smaller p-values do not
necessarily imply the presence of larger effects and larger p-values do not imply a lack of effect.
A tiny effect can produce a small p-value if the sample size is large enough, and large effects may
produce unimpressive p-values if the sample size is small.

4.7 Experiments with Friedman’s functions

The results presented in the previous sections refer to conditions in which the actual p(δi) (mis-
specified or not) is known. In this section we perform experiments in which the δi’s are not sampled
from an analytical distribution; rather, they are due to different settings of sample size, noise etc.
This is a challenging setting for the hierarchical model, whose p(δi) is unavoidably misspecified.

We generate data sets via the three functions (F#1, F#2 and F#3) proposed by Friedman
(1991).

Function F#1 contains ten features x1, . . . , x10, each uniformly distributed over [0, 1]. Only five
features are used to generate the response y:

F#1 : y = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε1,

where ε1 ∼ N(0, 1). We turn this regression problem into a classification one by discretizing y in
two bins, delimited by the median of y (which we estimate on a sample of 10,000 instances).

Functions F#2 and F#3 have four features x1, . . . , x4 uniformly distributed over the ranges:

0 ≤ x1 ≤ 100,

40π ≤ x2 ≤ 560π,

0 ≤ x3 ≤ 1,

1 ≤ x4 ≤ 11.

The functions are:

F#2 : y = (x2
1 + (x2x3 − (1/x2x4))2)0.5 + ε2,

F#3 : y = arctan

(
x2x3 − (1/x2x4)

x1

)
+ ε3,

where ε2 ∼ N(0, σ2
ε2) and ε3 ∼ N(0, σ2

ε3). The original paper sets σε2=125 and σε3=0.1. Also in this
case we turn the problem into a classification one by discretizing the response variable in two bins,
around the median of y.

We consider 18 settings for each function, obtained by varying the sample size (n), the standard
deviation of the noise (σε) and either considering only the original features or adding further twenty
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Function type σε n random feats Tot settings

F#1 {0.5,1,2} {30,100,1000} {0,20} 3 · 3 · 2 =18
F#2 {62.5,125,250} {30,100,1000} {0,20} 3 · 3 · 2 =18
F#3 {0.05,0.1,0.2} {30,100,1000} {0,20} 3 · 3 · 2 =18

Table 4 Settings of the Friedman functions.

Gaussian features, all independent of the class (random features). We have overall 54 settings: 18
settings for each function. They are summarized in Table 4.

As a pair of classifiers we consider linear discriminant analysis (lda) and classification trees
(cart), as implemented in the caret package for R, without any hyper-parameter tuning. As first
step we need to measure the actual δi between two given classifiers in each setting, which then
allows us to know the population of the δi’s.

Our second step will be to check the conclusions of the signed-rank test and of the hierarchical
model when they are provided with cross-validation results referring to a subset of settings.

Measuring δi

We start by measuring the actual difference of accuracy between lda and cart in each setting. In
the i-th setting we estimate δi as follows:

– for j=1:500
– sample training data according to the specifics of the i-th setting: <function type, n, σε,

number of random features;
– fit lda and cart on the generated training data;
– sample a large test set (5000 instances) and measure the difference of accuracy dij between

cart and lda;
– set δi ' 1/500

∑
j dij .

Our procedure yields accurate estimates since each repetition is performed on independently
generated data characterized by large test sets.

For instance if two classifiers have mean difference of accuracy x̄=0.09, with standard deviation
s=0.06; the 95% confidence interval of their difference is tight:

x̄± 1.96 · s√
n

= 0.09± 1.96 · 0.06√
500

= [0.085− 0.095].

If instead we had performed 500 runs of 10-folds cross-validation obtaining the same value of
x̄ and s, the confidence interval of our estimates would be about 3.5 times larger, as the standard

error would be s
√

1
n + ρ

1−ρ instead of s√
n

, as shown in Eqn.(1).

Ground-truth

We compute the δi of each setting using the above procedure. The ground-truth is that lda is
significantly more accurate than cart. More in detail, 65% of the δi’s belong to the region to the
right of the rope (lda being significantly more accurate than cart). Thus right is the most probable
outcome of the next δi. Moreover, the mean of the δi’s is δ0=0.02 (in favor of lda).
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Assessing the conclusions of the tests

We run 200 times the following procedure:

– random selection of 12 out of 18 settings for each Friedman function, thus selecting 36 settings;
– in each setting:

– generate a data set according to the specific of the setting;
– run 10 runs of 10-folds cross-validation of lda and cart using paired folds;

– analyze the cross-validation results on the q=36 data sets using the signed rank and the hier-
archical test.

We start checking the power of the tests, defined as the proportion of simulations in which
the null hypothesis is rejected (signed-rank) or the posterior probability p(right) exceeds 95%
(hierarchical test).

The two tests have roughly the same power: 28% for the signed-rank and 27.5% for the hier-
archical test. In the remaining simulations the signed-rank does not reject H0; in those cases it
conveys no information since the p-values cannot be interpreted.

We can instead interpret the posterior odds yielded by the hierarchical model, obtaining the
following results:

– in 11% of the simulations both o(right, rope) and o(right, left) are larger than 20, providing
strong evidence in favor of lda even though p(right) does not exceed 95%;

– in a further 33% of the simulations both o(right, rope) and o(right, left) are larger than 3,
providing at least positive evidence in favor of lda.

We have moreover to point out a 2% of simulations in which the posterior odds provide erro-
neously positive evidence for rope over both right and left. In no case there is positive evidence for
left over either rope or right.

Thus the interpretation of posterior odds allows drawing meaningful conclusions even when the
95% threshold is not exceeded. The probabilities are sensibly estimated, even if p(δi) is unavoidably
misspecified.

As a further check we compare MSEMLE and MSEShr. Also in this case MSEMLE is much lower
than MSEShr (Fig 5), with an average reduction of about 60%. This further confirms the properties
of the shrinkage estimator.

0 0.005 0.01 0.015 0.02 0.025

MSEMLE

MSEShr

Mean Squared Error

Fig. 5 Boxplots of MSEMLE and MSEShr over 200 repetitions of our experiment with the Friedman functions.

4.8 Sensitivity analysis on real-world data sets

We now consider real data sets. In this case we cannot know the actual δi’s: we could repeat a few
hundred times cross-validation but the resulting estimates would have large uncertainty as already
discussed.
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We exploit this setting to perform sensitivity analysis and to further compare the conclusions
drawn by the hierarchical model and of the signed-rank test.

We consider 54 data sets taken from the webpage1 of WEKA data sets. We consider four
classifiers: naive Bayes (nbc), hidden naive Bayes (hnb), decision tree (j48), grafted decision tree
(j48gr). Witten et al. (2011) provides a summary description of all such classifiers with pointers to
the relevant papers. We perform 10 runs of 10-folds cross-validation for each classifier on each data
set. We run all experiments using the WEKA2 software.

A fundamental step of Bayesian analysis is to check how the posterior conclusions depend on
the chosen prior and how the model fits the data. The hierarchical model shows some sensitivity on
the choice of p(δi), being instead robust to the other assumptions (see later for further discussion).
The Student distribution is more flexible than the Gaussian and we have found that it consistently
provides better fit to the data. Yet, the model conclusions are sometimes sensitive on the prior on
the degrees of freedom p(ν) of the Student.

In Table 5 we compare the posterior inferences of the model, using the prior p(ν) = Gamma(2, 0.1)
(proposed by Juárez & Steel (2010)) or using the more flexible model described in Sec. 3, where the
parameters of the Gamma are described as random variables with their own prior distributions.
Such two variants are referred to as Gamma(2,0.1) and hierarchical in Table 5.

Hierarchical Gamma(2,0.1)
pair left rope right left rope right

nbc-hnb 1.00 0.00 0.00 1.00 0.00 0.00
nbc-j48 0.80 0.02 0.18 0.80 0.01 0.20
nbc-j48gr 0.84 0.02 0.14 0.84 0.01 0.15
hnb-j48 0.03 0.10 0.87 0.03 0.02 0.95
hnb-j48gr 0.03 0.07 0.90 0.03 0.02 0.95
j48-j48gr 0.00 1.00 0.00 0.00 1.00 0.00

Table 5 Posterior probabilities computed by two variants of the hierarchical model.

In some cases the estimates of the two models differ by some points (Tab. 5). This means that
the actual high-level distribution from which the δi’s are sampled is not a Student (or a Gaussian),
otherwise the estimate of the two models would converge.

Which model better fits the data? We respond to this question by adopting a visual approach.
We start considering that the shrinkage estimates of the δi’s are identical between the two models.
We then compute the density plot of the shrinkage estimates (our best estimate of the δi’s). We
take such density as the ground truth (this is actually our best approximation to the ground truth)
and we plot it in thick black (Fig. 6). Then we sample 8000 δi’s from both variants of the model,
obtaining two further densities. We then plot the three densities for each pair of classifiers (Fig. 6).
We produce all the density plots using the default kernel density estimation provided in R. In
general the hierarchical model, being more flexible, fits better the data than the model equipped
with a simple Gamma prior.

4.8.1 Sensitivity on the prior on σ0 and σi

The model conclusions are moreover robust with respect to the specification of the priors p(σi)
and p(σ0). Recall that σi is the standard deviation on the i-th data set while σ0 is the standard
deviation of the high-level distribution.

1 http://www.cs.waikato.ac.nz/ml/weka/datasets.html
2 http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 6 Comparison of the densities estimated by p(δi) of two variants of the hierarchical model in selected cases.

Our model assumes σi ∼ unif(0, σ̄) where σ̄ = 1000s̄ where s̄ is the average of the sample stan-
dard deviations of the different data sets. The posterior distribution of σi is however substantially
unchanged if we adopt instead σ̄ = 100s̄.

The same consideration applies to σ0, whose prior is p(σ0) = unif(0, s̄0). We obtain the same
posterior distribution for σ0 using as upper bound s̄0 = 1000sx̄ or s̄0 = 100sx̄, where sx̄ is the
standard deviation of the x̄i’s.

4.9 Comparing the signed-rank and the hierarchical test

We compare the conclusions of the hierarchical model and of the signed-rank test on the same cases
of the previous section. The results are given in Tab. 6.

Both the signed-rank and the hierarchical test claim with 95% confidence hnb to be significantly
more accurate than nbc.

In the following comparisons apart from the last one, the two tests do not draw any conclusion
with 95% confidence. The signed-rank does not reject the null hypothesis, while the hierarchical
test does not achieve probability larger than 95%.
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Hierarchical Signed-rank
pair left rope right p-value

nbc-hnb 1.00 0.00 0.00 0.00
nbc-j48 0.80 0.02 0.18 0.46

nbc-j48gr 0.84 0.02 0.14 0.39
hnb-j48 0.03 0.10 0.87 0.07

hnb-j48gr 0.03 0.07 0.90 0.08
j48-j48gr 0.00 1.00 0.00 0.00

Table 6 Posterior probabilities of the hierarchical model and p-values of the signed-rank.

When the signed-rank test does not reject the null hypothesis, it draws a non-informative
conclusion. We can instead always interpret the posterior odds yielded by the hierarchical model.
When comparing nbc and j48, there is a positive evidence for right (j48 being more accurate than
nbc) over left and strong evidence for right over rope. We thus conclude that there is positive
evidence of j48 being practically more accurate than nbc. Similarly, we conclude that there is
positive evidence of j48gr being practically more accurate than nbc

When comparing hnb and j48, there is strong evidence for right (hnb being more accurate than
j48) over both left and rope. We conclude that there is strong evidence of j48 being practically
more accurate than hnb. We draw the same conclusion when comparing hnb and j48gr.

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02

j48 vs j48gr

Fig. 7 Boxplots of the differences of accuracy x̄i’s between j48 and j48gr on 54 data sets.

The two test draw opposite conclusions when comparing j48 and j48gr. The signed-rank declares
j48gr to be significantly more accurate than j48 (p-value 0.00) while the hierarchical model declares
them to be practically equivalent, with p(rope)=1. The reason why the two tests achieved opposite
conclusions is that the differences have a consistent sign but are small-sized. Most data sets yield
a positive difference in favor of j48gr; this leads the signed rank test to claim significance. Yet
the differences lies mostly within the rope (Fig. 7). The hierarchical model shrinks them further
towards the overall mean and eventually claims the two classifiers to be practically equivalent. The
posterior probabilities remain unchanged even adopting the half-sized rope (-0.005, 0.005). It thus
seems fair to conclude that, even if most signs are in favor of j48gr, the accuracies of j48 and j48gr
are practically equivalent.

5 Conclusions

The proposed approach is a realistic model of the data generated by cross-validation across multiple
data sets. Through the rope it also defines a sensible null hypothesis which can be verified, allowing
the test to detect classifiers that are practically equivalent. The interpretation of the posterior
odds allows drawing meaningful conclusions even when the posterior probabilities do not exceed
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95%. Thanks to shrinkage, the hierarchical model estimates the δi’s more accurately than the
usual approach of averaging (independently on each data set) the cross-validation differences. An
interesting research direction is thus the adoption of a non-parametric approach for the high-level
distribution p(δi). This is a non-trivial task which we leave for future research.
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6 Appendix

6.1 Implementing two classifiers with known difference of accuracy

On the i-th data set we need to simulate two classifier whose actual difference of accuracy is δi.
We start by sampling the instances from a naive Bayes model with two features. Let us denote by
C the class variables with states {c0, c1} and by F and G the two features with states {f0, f1} and
{g0, g1}. The naive Bayes model is thus G← C → F . The parameters of the conditional probability
tables are: P (c0)=0.5; P (f0|c0) = θf ; P (f0|c1) = 1 − θf ; P (g0|c0) = θg; P (g0|c1) = 1 − θg with
θf > 0.5. The remaining elements of the conditional probability tables are the complement to 1 of
the above elements. We set θf=0.9 and θg = θf + δi. We sample the data set from this naive Bayes
model.

During cross-validation we train and test the two competing classifiers C → F and C → G.
Their expected accuracies are θf and θg respectively, and thus their expected difference of accuracy
is δi = θf − θg. To explain this statement, let us first consider classifier C → F . Assume that the
marginal probabilities of the class have been correctly estimated. The classification thus depends
only on the conditional probability of the feature given the class. If F=f0 the most probable
class is c0 as long as P̂ (c0|f0) > 0.5, where P̂ denotes the conditional probability estimated from
data. The accuracy of this prediction is θf . It F=f1, the most probable class is c1 as long as

P̂ (c1|f1) = θf > 0.5. Also the accuracy of this prediction is θf . If the bias of conditional probability

(P̂ (c0|f0) >0.5 and P̂ (c1|f1) >0.5) is correctly estimated the accuracy of classifier C → F on a large
test set is θf . Analogously, the accuracy of classifier C → G in the same conditions is θg, so that
their difference is δi. Since the sampled data set have finite size the mean difference of accuracy x̄i
measured by cross-validation will fluctuate with some variance around δi.

6.2 Proofs

Proof of Proposition 1 Consider the hierarchical model:

P (x̄, δ, δ0, σ
2
0)

=
q∏
i=1

N(xi; 1δi,Σ)N(δi; δo, σ
2
o)p(δo, σ

2
o),

(11)

We aim at computing the derivative of the log(P (x̄, δ, δ0, σ
2
0)) w.r.t. the parameter δi, δ0, σ

2
o . Con-

sider the quadratic term from the first and second Gaussian:

1

2
(xi − 1δi)

TΣ−1(xi − 1δi) +
1

2σ2
o

(δi − δo)2;
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its derivatives w.r.t. δi is 1TΣ−1(xi − 1δi) + 1
σ2
o
(δi − δo). Exploiting the fact that

1TΣ−1(xi − 1δi) = 1TΣ−1(xi − 1x̄i + 1x̄i − 1δi)

= 1TΣ−1(1x̄i − 1δi),

it follows that
d

δi
ln(P (·)) ∝ 1

σ2
n

(x̄i − δi) +
1

2σ2
o

(δi − δo)2,

where σ2
n = 1

1TΣ−11
= 1

n2 1TΣ1. The latter equality can be derived by Corani & Benavoli (2015)[Ap-
pendix], i.e.,

1

1TΣ−11
=

n

1 + (n− 1)ρ
=

1

n2
1TΣ1.

The other derivatives can be computed easily.

Proof of Proposition 2 Let us consider the likelihood:

p(xi|δi,Σ) = N(xi; 1δi,Σ)

=
exp(−1

2 (xi − 1δi)
TΣ−1(xi − 1δi))

(2π)n/2
√
|Σ|

. (12)

Let us define x̄i =
∑n
j=1 xij/n. The MSE of the maximum likelihood estimator is:

MSEMLE =

∫∫
(δi − x̄i)2

N(xi; 1δi,Σ)p(δi)dxidδi.

Consider that (δi − x̄i)2 =
(
δi − 1

n1Txi

)2
where 1

n1T is a linear transformation of the variable xi.

From the properties of the Normal distribution, it follows that∫ (
δi − 1

n1Txi

)2
N(xi; 1δi,Σ)dxi =

1

n2
1TΣ1

and since ∫
(

1

n2
1TΣ1)p(δi)dxidδi =

1

n2
1TΣ1,

we derive the first result.

Proof of Proposition 3 The MSE of the shrunken estimator can be obtained in a similar way. First
observe that

(δi − wx̄i − (1− w)δ0)
2

= w2 (δi − x̄i)2 + (1− w)2 (δi − δ0)2

+ 2w(1− w) (δi − x̄i) (δi − δ0)

and its expected value w.r.t. N(xi; δi, σ
2
n)p(δi) is:∫ [

w2σ2
n + (1− w)2 (δi − δ0)2

]
p(δi)dδi

= w2σ2
n + (1− w)2σ2

0 , (13)

where we have denoted σ2
n = 1

n2 1TΣ1.
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