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ABSTRACT

How can we run graphical inference on large graphs efficiently and

accurately? Many real-world networks are modeled as graphical

models, and graphical inference is fundamental to understand the

properties of those networks. In this work, we propose a novel

approach for fast and accurate inference, which first samples a

small subgraph and then runs inference over the subgraph instead

of the given graph. This is done by the bounded treewidth (BTW)

sampling, our novel algorithm that generates a subgraph with guar-

anteed bounded treewidth while retaining as many edges as pos-

sible. We first analyze the properties of BTW theoretically. Then,

we evaluate our approach on node classification and compare it

with the baseline which is to run loopy belief propagation (LBP)

on the original graph. Our approach can be coupled with various

inference algorithms: it shows higher accuracy up to 13.7% with

the junction tree algorithm, and allows faster inference up to 23.8

times with LBP. We further compare BTW with previous graph

sampling algorithms and show that it gives the best accuracy.
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1 INTRODUCTION

Given a large graph whose nodes represent discrete random vari-

ables, how can we compute their posterior marginals efficiently?

Graphical inference is a crucial task in data mining and machine
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Figure 1: Advantages of BTW over other approaches. BTW

a) gives the best accuracy when the junction tree (JT) algo-

rithm is used, and b) speeds up the inference without hurt-

ing accuracy when LBP is used. JT is intractable except for

the subgraphs from BTW.

learning, which has been applied to solve various node classifica-

tion problems such as malware detection [8, 32], social network

analysis [3, 13, 36], and recommender systems [5, 11].

Loopy belief propagation (LBP) [35] is an inference algorithm

which has been used widely for the node classification. Yet, LBP has

crucial limitations such that 1) it performs approximate inference

rather than exact inference, and 2) its convergence is not guaranteed

for general graphs; the conditions that LBP converges have been

found only for restricted settings [12, 21]. These limitations have

made it difficult to apply LBP to applications where the stability of

inference is required. There are previous works [9, 10] that aim to

solve the convergence problem by approximating LBP by a series

of linear operations, but they lead to unstable accuracy since the

amount of approximations is not bounded.

The junction tree algorithm [15] is an exact inference algorithm

that does not suffer from the unstable convergence. However, this

approach requires exponential time and space with the treewidth of

a graph [15]; thus, efficient inference requires graphs with bounded

treewidth. Although computing the treewidth of a graph is NP-

complete [4], recent advances [23, 24, 28] in structure learning of

Bayesian networks are able to learn from data a high-scoring graph

that respects a given treewidth bound. This allows exact tractable

inference on the learned graph. However, there are many applica-

tions where the graph is given, rather than learned: for instance,

node classification in a citation network of research articles. In
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(a) Original graph.

(TW ≈ 24)

(b) Sampled subgraph by RE.

(TW ≈ 8)

(c) Sampled subgraph by FF.

(TW ≈ 7)

(d) Sampled subgraph by BTW.

(TW = 1)

Figure 2: Guaranteed treewidth by BTW. (a) A web network of 163 blogs which are divided into two political groups. (b) The

random edge sampling and (c) the forest fire sampling [17] generate subgraphs with 162 edges, which have disconnected

components and large treewidth (≥ 7). (d) Our proposed bounded treewidth (BTW) sampling generates a connected subgraph

with the same number of edges, but with bounded treewidth of 1 while preserving the separate political groups.

such cases, exact inference is intractable if there is no control of

treewidth.

In this work, we propose a novel approach which allows efficient

inference on large graphs. Our idea comprises two steps. First, we

sample the original graph obtaining a bounded-treewidth subgraph.

This is done by our proposed bounded treewidth (BTW) sampling,

a novel algorithm to generate a subgraph with bounded treewidth

while retaining as many edges as possible. Once we obtain the sub-

graph, we run on it a) exact inference by the junction tree algorithm

or b) approximate inference by LBP based on a purpose. If we run

the junction tree algorithm, our approach is more accurate than

running LBP on the original graph, despite slow speed. We also

have guaranteed convergence as the algorithm runs exact inference.

If we run LBP, our approach shows similar accuracy with much

faster computational time. These results are due to the success of

our BTW sampling that maintains essential edges of the original

graph with guaranteed bounded treewidth.

To the best of our knowledge, BTW is the first graph sampling

algorithm that controls the treewidth of subgraphs and allows ef-

ficient graphical inference. The problem of generating subgraphs

similar to an original graph has been studied widely in the data

mining community [2, 17, 19], but none of the previous algorithms

controls the treewidth of subgraphs. Furthermore, unlike other ap-

proaches that sample an edge at each iteration until the desired

size is achieved, BTW selects cliques as minimal units, maintaining

the essential neighborhood of each node. This gives every node a

chance to preserve its comprehensive context and leads to improv-

ing the efficiency of graphical inference.

We evaluate our approach with the junction tree algorithm and

LBP, which are the representative inference algorithms, on vari-

ous real-world networks. As a result of extensive experiments, we

demonstrate the following strengths of our approach:

• The junction tree algorithm on the subgraph generated from

BTW achieves the highest accuracy, which is up to 13.7%

higher than that from LBP on the original graph.

• LBP on the subgraph generated from BTW is up to 23.8×

faster than LBP on the original graph, providing similar or

even higher accuracy in some datasets.

• When we run LBP on subgraphs generated from BTW and

other sampling algorithms, BTW shows up to 5.6% higher

accuracy than the best competitors do.

These observations are summarized in Figure 1. BTW enables exact

inference by the junction tree algorithm which is intractable in raw

graphs and shows the highest accuracy. BTW also allows faster in-

ference when LBP is used, while maintaining the original accuracy.

The detailed experimental results are presented in Section 5.

Figure 2a shows BTW generates a subgraph with guaranteed

treewidth on a web network of 163 blogs with two political groups.

The previous random edge (RE) sampling and forest fire (FF) sam-

pling generate subgraphs of Figures 2b and 2c, respectively, which

contain disconnected components, noisy connections between the

different groups, and large treewidth (≥ 7). On the other hand,

BTW generates a connected subgraph of Figure 2d, which has low

treewidth of 1 and preserves the separate political groups with the

same number of edges as in Figures 2b and 2c. As a result, the junc-

tion tree algorithm is tractable only in the graph of Figure 2d, and

LBP shows the best performance in that graph. The approximate

treewidth is reported in (a) to (c) by the min-fill-in and min-degree

heuristics, since the exact computation is intractable [6].

2 RELATED WORKS

We introduce related works for our proposed approach, which are

categorized into treewidth, inference algorithms, and sampling

algorithms. We denote an undirected graph by G = (V, E) where

V and E represent the sets of nodes and edges, respectively.

2.1 Treewidth

Intuitively, the treewidth of a graph quantifies the extent to which

it resembles a tree structure. We introduce the concepts of a clique

and triangulation before defining formally the treewidth.

Definition 2.1 (Clique). Given a graph G, a set C of nodes is a

clique if all of its nodes are pairwise connected. A clique of k nodes

is called a k-clique and it contains k(k − 1)/2 edges. A clique C is

maximal if it is not a subset of a larger clique in the graph G.

Definition 2.2 (Triangulated graph). An undirected graph T is

triangulated if all the chordless cycles existing in T are of length

less than or equal to 3. Note that a chordless cycle is a cycle such
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that no two nodes of the cycle are connected by an edge that does

not belong to the cycle. Triangulation is the process of generating a

triangulated graph from a graph G by inserting additional edges

cutting all the cycles of length greater than 3 in G.

Definition 2.3 (Treewidth). The treewidth of a triangulated graph

T is the number of nodes in its largest maximal clique minus one.

The treewidth of a general graph G is the minimum treewidth

among all possible triangulations of G.

Given a graph, it is intractable to compute its treewidth because

it requires all possible triangulations [6]. Instead, the treewidth can

be bounded to k if the graph is shown as a subgraph of a k-tree.

Definition 2.4 (k-tree). An undirected graph K = (V, E) is a k-

tree of treewidth k if the addition of any edge (u,v) < E among its

nodes u,v ∈ V increases its treewidth k , or it is a (k + 1)-clique

and thus no edge can be added. A subgraph of a k-tree is called a

partial k-tree, and its treewidth is smaller than or equal to k .

We can generate a k-tree by the following inductive process [26]:

• Base case: a clique with k + 1 nodes is a k-tree.

• Inductive step: given a k-tree Kn on n nodes, a new k-tree

Kn+1 is obtained by connecting a new node u to a k-clique

C in Kn and generating k additional edges between u and C.

This adds a new (k + 1)-clique of nodes {u} ∪ C to Kn .

Learning a graphical model with bounded treewidth has been

studied extensively. Karger and Srebro [14] have learned a Markov

network that best represents given observations. Srebro [31] also

has learned aMarkov network that represents a probability distribu-

tion. For learning a Bayesian network instead of a Markov network,

score-based learning with bounded treewidth has recently been ad-

dressed in [28, 29]. However, none of the previous approaches have

used the idea of bounded treewidth learning to sample a subgraph

that is suitable for efficient graphical inference.

2.2 Inference Algorithms

Belief propagation (BP) is an inference algorithm for Markov net-

works [35], which performs efficiently variable elimination. Given

potentials of the variables in a graph, BP efficiently computes their

posterior marginals by passing messages between the variables. BP

computes the exact marginals when the graph is a tree. Otherwise,

we run its variations described below.

Loopy belief propagation (LBP) is an approximate inference al-

gorithm for cyclic graphs [35]. Unlike BP that passes the messages

sequentially and only once following the tree structure, LBP up-

dates all messages iteratively until convergence. However, since its

convergence is not guaranteed, one needs to adjust the parameters

to stabilize the termination of the algorithm, which are represented

as a potential or an affinity matrix [8, 25]. There exist various ap-

proaches to guarantee its convergence by linear approximations,

but the amount of approximation is not bounded [9, 10].

The junction tree algorithm is an exact inference algorithm for

cyclic graphs [15]. It triangulates a given graph G and generates a

supergraph T . Then, it finds the maximal cliques on T and builds a

maximum weight spanning tree over the cliques where the weight

between two cliques is the number of shared variables. We get the

exact marginals by running BP on the resulting tree. However, its

time and space complexities are exponential with the size of the

largest maximal clique in T , which depends on how we triangulate

G. Since finding an optimal triangulation is intractable, a typical

approach is to revert to a heuristic approach whose quality is not

guaranteed [7]. As a result, a tractable computation of the junction

tree algorithm is not guaranteed on a general graph.

2.3 Graph Sampling

Graph sampling is a task of generating subgraphs that preserve

the properties of a graph. Given an undirected graph G = (V, E),

we aim to generate a subgraph U = (V ′, E ′) such that V = V ′

and E ′ ⊂ E. In this work, we focus on the edge-sampling which

samples only the edges not changing the nodes. This is because our

objective is to run graphical inference efficiently; each node is an

essential variable which cannot be removed from the graph.

Graph sampling has been studied widely in data mining commu-

nity. Leskovec and Faloutsos [17] compared different graph sam-

pling algorithms and showed that the forest fire sampling [18] and

the random walk sampling work well in maintaining the original

properties. Li et al. [19] showed drawbacks of existing random walk

based algorithms and proposed two novel methods. Some works

focused on social networks. Wang et al. [34] compared various

sampling algorithms on directed social networks. Voudigari et al.

[33] proposed a sampling algorithm on social networks.

However, there has been no sampling algorithm that focuses

on graphical inference. Most of the previous approaches sample

subgraphs by selecting individual edges iteratively until the desired

size is achieved, missing complex relationships between multiple

nodes. On the other hand, our BTW sampling selects cliques as

minimal units instead of edges to guarantee the bounded treewidth

of subgraphs and to maintain the comprehensive neighborhood

of each node. This leads to improved accuracy and efficiency of

graphical inference on the generated subgraphs.

3 PROPOSED METHOD

We propose the bounded treewidth (BTW) sampling, a novel al-

gorithm for generating subgraphs with bounded treewidth. BTW

selects cliques as minimal units instead of edges to bound the tree-

width, supporting tractable and accurate inference by the junction

tree algorithm and preserving the context of each node.

Figure 2a shows a simple graph of 163 nodes with binary states,

which is generated by slicing randomly a principal submatrix from

the adjacency matrix of the PolBlogs network which we use in our

experiments (Section 4). The two groups of nodes are separated

clearly satisfying the property of homophily. BTW generates the

subgraph in Figure 2d bounding its treewidth to 1, enabling accurate

and efficient inference with only 39% of the edges.

3.1 Algorithm

The main objective of BTW is to guarantee the bounded treewidth

of a sampled subgraph, which in turn leads to accurate and efficient

inference on the graph. In other words, given a treewidth bound

k , the treewidth of a subgraphU generated from BTW should be

smaller than or equal to k . To achieve the objective, we keep track

of a k-tree K along with U such that U is a subgraph of K . Thus, it

is possible to bound its treewidth without exact computations.
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Algorithm 1 Bounded treewidth (BTW) sampling

Require: a graph G = (V, E) and bound k

Ensure: a sampled subgraphU and a k-tree K

1: K ,U ,H ← initialize(G,k) # H is a max-heap

2: while |VU | < |V| do

3: u,C ← next_node(H )

4: U ← (VU ∪ {u}, EU ∪ {(u,v)|v ∈ NG (u) ∩ C})

5: K ← (VK ∪ {u}, EK ∪ {(u,v)|v ∈ C})

6: H ← update_heap(H ,u,C)

7: end while

8: return U , K

BTW first selects k + 1 nodes randomly to create an initial k-tree

K , which is a (k + 1)-clique, and creates the induced subgraph U

from the same set of nodes. Then, BTW takes iterations of selecting

a new node u by a score-based approach: given a score function

m(v,C) between a candidate node v and a clique C in K , it selects

the node with the maximum score. BTW adds the selected node u

to both K andU until all nodes are included inU .

Algorithm 1 describes the whole process of BTW. It initializes a

k-tree K , a subgraphU , and max-heap H in line 1. The max-heap

H is introduced to speed up the process and is discussed in Section

3.2. Then, BTW adds a new node u iteratively until all nodes are

included inU , in lines 2 to 7. At each iteration, it selects u in line 3

and then updatesU , K , and H in lines 4 to 6. BTW returns K along

withU as a result in line 8, since K is a junction tree that is needed

when running the junction tree algorithm overU .

3.1.1 Score Function. The simplest choice of the score functionm

is the uniform random function:

m(u,C) = uniform(0, 1). (1)

Since it scores randomly all candidate nodes, using this function

equals to first ordering all nodes randomly and then adding one

node at a time following the order. However, it generates a sparse

subgraph that maintains very few edges, because it does not take

into account the structure of the original graph G.

Our main objective is to generate subgraphs that preserve the

properties of G to support efficient graphical inference. Thus, we

propose the following score function that is designed to maximize

the number of edges in the sampled subgraphs:

m(u,C) =
∑

v ∈C∩NG (u)

(w(u,v) + uniform(0,α)) , (2)

where α is a small constant, andw(u,v) is a positive weight of the

edge between nodes u and v , assigned before running BTW.

This score function maximizes greedily the sum of edge weights

in the subgraph U at every iteration. It simply maximizes the num-

ber of edges ifw is a constant function, while one can designw to

treat the edges differently. The uniform random function with the

parameter α gives a randomness to the sampling process when the

scores of multiple nodes are similar. For our experiments, we setw

to a constant function as we deal with simple graphs, and α to a

small value 10−4 to use it as a tie-breaker.

3.1.2 Subgraph Generation. BTW chooses randomly the first vari-

able u1 ∈ V and initializes the set I of sampled nodes:

I = {u1}. (3)

Then, until I contains k + 1 variables we add to it a new node

ui that maximizes the score, chosen fromV \ I. Since we initially

do not have a k-tree or a subgraph, we use I instead of a clique:

the score function can be used generally with a node set.

ui = argmax
u ∈V\I

m(u,I). (4)

After that, BTW generates a complete graph Kk+1 over the sam-

pled k + 1 nodes, which is a k-tree by construction. BTW generates

also the induced subgraphUk+1 by selecting all the original edges

whose incident nodes are both in I. Uk+1 is the initial subgraph

which we update in the following iterations, and its treewidth is at

most k since it is a subgraph of Kk+1.

Then, BTW takes iterations of adding a subsequent node ui+1 to

the current subgraphUi and k-tree Ki of i nodes, generating new

graphs Ui+1 and Ki+1 of i + 1 nodes. As in the initialization, BTW

selects a node that maximizes the score functionm as follows:

ui+1,C
∗
k
= argmax

u,Ck ⊆Ki

m(u,Ck ), (5)

where Ck is a k-clique contained in Ki .

Given ui+1 and C
∗
k
, BTW first updates Ki by connecting ui+1 to

C∗
k
. This is the same as adding a new clique C∗

k
∪ {ui+1} to Ki by

considering a clique as a minimal sampling unit. However, it is not

possible to add the same clique to Ui since some of the edges in

the clique may not be included in the original graph G. Thus, we

instead connect ui+1 only to NG (ui+1) ∩ C
∗
k
to guarantee that U

is a subgraph ofG; note that K is not necessarily a subgraph of G

as it is used only for bounding the treewidth of U . We repeat the

iteration until all nodes are sampled, and return K andU .

3.1.3 Number of Sampled Edges. BTW aims to maximize greedily

the number of edges in U while bounding its treewidth, using the

score function of Equation (2). The function counts the number of

edges that are added toU if u is connected to C. Thus, the number

of edges in Ui+1 is maximized as we find the maximum score for

all pairs of nodes and cliques, and connect the selected pair by

Equation (5) to create Ki+1. The number of sampled edges will be

much less if the score function of Equation (1) is used.

It is possible to further limit the number of edges in U by any

sampling algorithm asU already has bounded treewidth; the tree-

width of any of its subgraphs is bounded to k . On the other hand,

it is very difficult to increase the number of sampled edges, since it

is likely that more edges lead to increased treewidth. Recall that it

takes exponential time even to simply compute the treewidth of a

graph. Thus, we leave it as a future work to increase the number of

sampled edges from our subgraphU . It can be done from designing

a new score function or by implementing a whole new algorithm

coupled with more advanced techniques.

3.2 Optimization

It is redundant to compute the scores of all candidate nodes at each

iteration since the scores of most nodes remain unchanged. Thus,

we store in a max-heap the maximum score s(u) = maxC∈K m(u,C)
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of every candidate node u and optimize the algorithm by selecting

the next node from the max-heap at each iteration.

We initialize s(u) of every node u as zero. Then, at each iteration

where a new clique Ck+1 is added to the current k-treeK , we update

the score s(u) of every candidate node u as follows:

s(u) ← max

{
s(u), max

Ck ⊂Ck+1
m(u,Ck )

}
. (6)

If s(u) is updated, we store also the clique Ck with the maximum

score since it is needed when adding u to the subgraph.

A naive approach is to update the scores of all nodes neighboring

in Ck+1, since such nodes’ scores with regard to Ck+1 are greater

than zero. The new scores need to be compared with their previous

maximum scores. To expedite the update process, our optimization

updates the scores of only the neighbors of a new node v which has

been added to the current subgraph U . This results in the same

update as in the naive approach, but is more efficient in orders of

magnitude: it makes BTW run in linear time with the number of

edges and scalable to large graphs.

Lemma 3.1 (Optimization). When a new node v and a clique

Ck+1 of k + 1 nodes are added to the current subgraphU and k-tree

K , respectively, the scorem(u,Ck ) of a node u < NG (v) and a clique

Ck ⊂ Ck+1 is less than or equal to the current score s(u).

Proof. We assume that α in Equation (2) is used only as a tie-

breaker. The following holds because we assume u < NG (v):

max
Ck ⊂Ck+1

m(u,Ck ) =m(u,Ck+1 \ {v}).

Then, Equation (6) for computing the new maximum score s(u)

of node u is given as follows with regard to Ck+1:

s(u) ← max {s(u),m(u,Ck+1 \ {v})} . (7)

Recall that Ck+1 is formed by connecting v to a k-clique Ck =

Ck+1 \ {v}, existing already in K . Since all cliques in K have been

used already to update the score of every candidate node which

is not included in the current K , Ck has also been considered for

updating s(u) before we add v to K in this step. Thus, Equation (7)

is a redundant operation that does not change s(u). □

3.3 Theoretical Analysis

We further present theoretical analysis of BTW about its time com-

plexity and preservation of connectivity. Lemma 3.2 shows that

BTW has a linear scalability with the number of edges of the given

graph. The effect of k2 is negligible since we normally use a small

treewidth bound k such as 2 or 4.

Lemma 3.2 (Time complexity). Given a graphG = (V, E) and a

treewidth boundk , the time complexity of BTW isO(|E |(k2+log |V|))

with the optimization of Lemma 3.1.

Proof. BTW selects a new nodeu at each iteration. The number

of heap updates after selecting u is O(|NG (u)|), and each update is

O(log |V|). The computation of Equation (6) to update each score

is O(k2). Thus, the complexity of all heap updates is given as

O(
∑

u ∈V

|NG (u)|(k
2
+ log |V|)) = O(|E |(k2 + log |V|)).

Table 1: A summary of four real-world networks that we use

in our experiments. All datasets are publicly available.

Network Nodes Edges Labels

Wikipedia1 35,579 495,357 16

CoRA2 23,567 91,965 10

PubMed3 19,717 44,324 3

PolBlogs4 1,222 16,714 2

The computational cost for heap deletions is safely ignored with a

natural assumption of |V| ≤ |E|, since it is O(|V| log |V|). □

BTW preserves the connectivity of the original graph in sam-

pled subgraphs. This is especially useful for graphical inference

because disconnected nodes in a graphical model are considered

independent from each other, which is not true for most real-world

networks. In such cases, evidence is not propagated to all nodes,

decreasing the accuracy of classification.

Lemma 3.3 (Connectivity preservation). When a given graph

G is connected, all intermediate subgraphs during the iterations of

BTW are connected, including the one to be returned.

Proof. We prove the lemma by mathematical induction:

(1) Base case. The initial nodes in I are guaranteed to be con-

nected because every node is selected for maximizing the

number of edges of the subgraphU when added to I.

(2) Inductive step.We assume that the subgraphUi of i nodes

is connected. Then, the next subgraph Ui+1 with an addi-

tional node u becomes disconnected only if there exists no

edge between the nodes inUi and the rest of G, since u has

been selected for its maximum score among the candidates.

However, that cannot happen since G is connected. Thus,

Ui+1 is connected.

Thus, every subgraph generated by BTW is connected. □

4 EXPERIMENTAL SETTINGS

In this section, we present experimental settings: datasets, competi-

tors, etc. Our experiments were done by a workstation with Intel

Xeon E5-2630 2.20GHz CPU and 50GB memory.

4.1 Datasets

We use four real-world networks summarized in Table 1. Wikipedia

is a crawled dump of Wikipedia pages from 16 top level categories

of the computer science domain [22]. The nodes represent pages,

and the edges represent hyperlinks. CoRA and PubMed are cita-

tion networks whose nodes represent research articles, and edges

represent citations [22, 30]. Each node is labeled according to the

research topic in which it falls into. PolBlogs is a web network

whose nodes represent political blogs (liberal or conservative ones),

and edges represent hyperlinks [1].

Some of the networks were originally directed. Thus, we model

them as undirected by removing the edge directions as done in [20].

1https://github.com/sharadnandanwar/snbc
2https://github.com/sharadnandanwar/snbc
3https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes.tgz
4http://www-personal.umich.edu/~mejn/netdata/polblogs.zip
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BTW (junction tree algorithm) BTW (LBP) Baseline (LBP on the original graphs)

+13.7%

+6.1%

BEST

(a) Wikipedia.

+10.0%

(b) CoRA.

+9.0%

(c) PubMed.

+0.7%

(d) PolBlogs.

23.8×

BEST

(e) Wikipedia.

3.2×

(f) CoRA.

1.9×

(g) PubMed.

7.1×

(h) PolBlogs.

Figure 3: Micro F1 scores of node classification and inference time by the junction tree algorithm (the solid blue lines) and

LBP (the solid green lines) over the subgraphs sampled by BTW, and the baseline (LBP over the original graph, shown by red

dashed lines). BTW with the junction tree algorithm achieves the highest accuracy, despite its slow inference time. On the

other hand, BTW with LBP shows comparable accuracy to the baseline with much faster inference.

We also remove the isolated components since they are independent

in terms of inference. The numbers of nodes and edges in Table 1

are counted after these preprocessing steps.

4.2 Graph Sampling Algorithms

We compare BTW with other graph sampling algorithms. We focus

on edge sampling approaches that sample only edges, since every

node is an essential target variable which we aim to classify.

Random edge (RE) sampling is the simplest algorithm that sam-

ples repeatedly an edge uniformly at random. However, it selects

most edges from high-degree nodes, ignoring the importance of

low-degree nodes. Random node-edge (RNE) sampling solves the

problem by selecting a node uniformly at random and sampling

one of its adjacent edges. Hybrid (HYB) approach [16] combines the

two approaches: it performs either a step of RE or RNE randomly

with a probability p at each iteration. p is set to 0.8 as in [16].

Random walk (RW) sampling uniformly at random picks a node

and then simulates a random walk with restart. It selects all edges

that its random walker passes through. Random jump (RJ) sampling

is similar to RW, but the random walker restarts randomly in any

node instead of the starting one. Frontier sampling (FS) [27] uses

multiple random walkers simultaneously to generate more stable

subgraphs. Forest fire (FF) sampling [18] selects n neighbors instead

of one at each step, where n follows a probability distribution.

Because none of the methods guarantees to keep the original

connectivity in subgraphs, we propose two additional algorithms

BTW-W and BTW-J by modifying RW and RJ, respectively. They

guarantee the connectivity of a sampled subgraph by generating a

spanning tree of nodes using BTW of k = 1 and then selecting the

Table 2: The average numbers of edges of subgraphs gener-

ated from BTW, with respect to the treewidth bound k .

Network k = 1 k = 2 k = 4 k = 8 k = 16

Wikipedia 35,578 57,896 84,213 126,234 165,620

Cora 23,566 36,307 46,158 51,310 54,479

PubMed 19,716 23,109 25,169 26,641 27,619

PolBlogs 1,221 2,004 3,086 4,477 6,374

remaining edges by their original algorithms (RW and RJ). We use

those approaches to demonstrate that the superior performance of

BTW comes from not only its ability to keep the connectivity, but

also its idea of sampling cliques instead of edges.

4.3 Node Classification by Inference

The real-world networks in Table 1 are not graphical models and

thus contain no probabilistic information. For solving node classifi-

cation by graphical inference, we model each dataset as a pairwise

Markov random field (MRF), an undirected graphical model that

has been widely used for node classification [8]. Compared with a

standard MRF that requires a potential for every clique existing in

a graph, a pairwise MRF uses only pairwise potentials, which we

call edge potentials, and thus the modeling process is simple.

It is important to choose proper potentials since they determine

the properties of a graphical model. Given the number n of states,

we generate an edge potential matrixψ of size n×n for each dataset

based on the observed evidence as follows. First, we initializeψ as
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BTW (proposed) HYB RNE

Always tractable

even with large k

Fails easily

(a) PubMed.

Always tractable

even with large k

Fails easily

(b) PolBlogs.

Figure 4: Ratios of successful runs (no out of memory error)

of the junction tree algorithm for subgraphs from BTW and

major competitors (HYB and RNE). BTWmaintains the suc-

cess ratio of 100%, while the others easily fall into memory

shortages as k increases.

a zero matrix. Then, for each connected pair of observed nodes in

the graph, we add one to the corresponding element of the matrix

based on their labels. After that, we normalize ψ by the sum of

its elements to make it represent a probability distribution. The

resulting potentials are shown to follow the homophily (details in

Appendix A). However, we have found that LBP does not converge

with the computed potentials since they are too skewed. For this

reason we introduce a new parameter d that alleviates the skewness

of the potentials and use it in all experiments where LBP is used

(details in Appendix B). We use the original potentials when apply-

ing the junction tree algorithm since it is a deterministic algorithm

and has no such problem.

For each network and sampling algorithm we generate 10 sub-

graphs with different random seeds. Then, we adopt the 3-fold cross

validation for each subgraph: we hide the labels of 1/3 of the nodes

and predict them by running graphical inference using the rest as

evidence. Then, we find the maximum-a-posteriori (MAP) assign-

ments as predicted labels from posterior distributions computed

from the inference. We evaluate the result using micro and macro

F1 scores as done in [22] but report only the micro F1 scores due to

the lack of space. We report the averages in all experiments.

5 EXPERIMENTAL RESULTS

In this section, we present experimental results which answer the

following questions about BTW:

Q1. Accuracy and inference time (Section 5.1).What are the

accuracy and inference time on the subgraphs from BTW

compared with those on the original graphs?

Q2. Comparison with other sampling algorithms (Section

5.2). Is BTW more suitable for the graphical inference com-

pared with the other sampling algorithms?

Q3. Optimization of BTW (Section 5.3). How much speedup

can be obtained by the optimization of BTW? How does it

scale with the number of edges and the treewidth k?

5.1 Accuracy and Inference Time

Figure 3 shows how the classification accuracy and inference time

change if we run the inference algorithms on the subgraphs from

BTW instead of the original graphs. The junction tree algorithm

Table 3: Micro F1 scores of LBP on the subgraphs from BTW

and the competitors when the treewidth bound k is 2. BTW

shows the best accuracy in all datasets.

Method Wikipedia CoRA PubMed PolBlogs

RE 35.3 ± 0.2 57.9 ± 0.3 61.8 ± 0.4 75.8 ± 1.0

RNE 51.3 ± 0.3 65.2 ± 0.2 71.1 ± 0.1 84.4 ± 0.6

HYB 49.4 ± 0.2 64.5 ± 0.2 69.8 ± 0.3 83.4 ± 0.4

RW 26.5 ± 2.7 43.0 ± 1.7 56.5 ± 1.2 65.2 ± 3.4

RJ 36.6 ± 0.4 55.4 ± 0.3 63.2 ± 0.4 75.6 ± 0.5

FS 29.8 ± 0.2 47.9 ± 0.2 56.2 ± 0.5 72.4 ± 0.8

FF 49.4 ± 0.2 63.7 ± 0.3 62.8 ± 0.4 79.8 ± 0.9

BTW-W 50.9 ± 1.4 66.8 ± 2.4 69.7 ± 0.7 82.4 ± 1.7

BTW-J 53.0 ± 0.3 67.5 ± 0.2 73.6 ± 0.8 85.0 ± 1.3

BTW 56.1 ± 0.5 68.6 ± 0.3 74.8 ± 0.4 86.6 ± 0.9

achieves up to 13.7% higher accuracy than the baseline (LBP on the

original graph), showing consistent improvements in most cases;

the exception is PolBlogs with small k , but the accuracy improves

with k even in this case and outperforms the baseline from k =

8. Although the inference is slower than the baseline due to the

overhead of computing the joint probability of each clique by the

junction tree algorithm, it is still tractable because BTW guarantees

to generate subgraphs with bounded treewidth.

The accuracy of LBP on the subgraphs is generally similar to

the baseline. This implies that BTW successfully captures essential

relationships between nodes, and thus LBP is able to recover the

original accuracy with less edges: the subgraphs of Wikipedia when

k = 2 contain only 11.7% of the original edges as shown in Table 2.

At the same time, LBP on the subgraphs is consistently faster than

the baseline from 1.5× to 23.8× based on the value of k .

We use small treewidth bounds in CoRA and Wikipedia (up to

6 and 4, respectively) in order to keep the junction tree algorithm

tractable, which requires large memory of O(nk ), where n repre-

sents the number of states [15]. Recall that n in both graphs are

much larger than in the other graphs. However even in this case

BTW yields an important improvement over the baseline.

5.2 Comparison with Other Approaches

We compare BTW and the other graph sampling algorithms by the

classification accuracy on generated subgraphs. Most competitors

require to know in advance the number of edges that the subgraph

should contain, while BTW finds the subgraph automatically once

k is specified. Thus, we first run BTW with a given bound k , record

the number of edges that are present in the subgraph, and let the

others generate subgraphs with the same numbers of edges.

Recall that the time and space complexities of the junction tree

algorithm are both exponential with k . Usually it is not possible to

run exact inference on subgraphs generated without any control of

the treewidth. This causes the junction tree algorithm to fail with

an out-of-memory error. The percentages of successful inference

(no out-of-memory) on PubMed and PolBlogs are shown in Figure

4. They decrease sharply for all methods other than BTW, espe-

cially when k > 3, while the inference is always successful on the

subgraphs returned by BTW due to the bounded treewidth.
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4.1×

7.7×

Opt. (k=1)
Opt. (k=4)
Naive (k=1)
Naive (k=4)

Figure 5: Sampling time of BTWon graphs of different num-

bers of edges and treewidth bound k . Opt. and Naive repre-

sent BTW with and without the optimization, respectively.

BTW runs up to 7.7 × faster with the optimization, showing

near linear scalability as presented in Lemma 3.2.

(a) CoRA (b) Wikipedia

Figure 6: The potential matrices of CoRA and Wikipedia.

The nodes in those graphs have the homophily as the diago-

nal elements are significantly larger than the others.

We then perform node classification on such subgraphs revert-

ing to LBP and obtain the accuracy in Table 3. BTW consistently

shows the best accuracy compared with all competitors. It is no-

table that BTW performs better than BTW-J and BTW-W that keep

the original connectivity in subgraphs by running BTW of k = 1

before other sampling algorithms. This implies that the superior

performance of BTW does not rely on its property of keeping the

connectivity, but on its main ideas of bounding the treewidth and

providing each node a chance of having a neighborhood of size k :

every node keeps essential relationships in sampled subgraphs.

5.3 Optimization of BTW

Figure 5 shows the running time of BTW on graphs with different

numbers of edges, with and without the optimization in Lemma 3.1.

We have sampled nine principle submatrices from the adjacency

matrix of Wikipedia for creating graphs of different sizes. BTW

shows near linear scalability with the number of edges as discussed

in Lemma 3.2. It also shows the effect of optimization: introducing

it makes BTW up to 7.7 times faster than before. Thus, BTW can

be used efficiently for running inference in large graphs.

6 CONCLUSION

In this work, we propose the bounded treewidth (BTW) sampling,

a novel graph sampling algorithm that generates subgraphs with

guaranteed bounded treewidth. BTW samples as many edges as

possible while bounding the treewidth, selecting cliques as minimal

Reaches full

convergence 

from d=128

No convergence

when d is small

PolBlogs
PubMed
CoRA
Wikipedia

Figure 7: Percentages of runs that LBP converges by differ-

ent values of d . LBP hardly converges with small d on three

of the four datasets, and the convergence ratios increase as

d increases: all ratios become 100% if d ≥ 128.

units of sampling and thus preserving the comprehensive neighbor-

hood of each node. The subgraphs generated from BTW make the

junction tree algorithm tractable by the bounded treewidth, which

shows up to 13.7% higher micro F1 in node classification than loopy

belief propagation (LBP) does on the original graph. Moreover, BTW

speeds up LBP up to 23.8 times with accuracy comparable to that

on the original graph, and consistently higher than those from the

other sampling algorithms. We expect that subgraphs generated

from BTW are suited to other applications which can exploit the

low treewidth. Future works include extending BTW to heteroge-

neous networks by introducing new score functions that consider

various types of nodes, edges, and additional attributes.

A POTENTIAL MATRICES

The following matricesψB andψM show the potentials of PolBlogs

and PubMed, respectively, that are generated from the process of

modeling MRFs in Section 4.3:

ψB =

[
0.437 0.047

0.047 0.469

]
, ψM =



0.118 0.042 0.019

0.042 0.356 0.038

0.019 0.038 0.329


.

Figure 6 shows the potentials of CoRA and Wikipedia by repre-

senting the values as colors (the bigger, the darker). The diagonal

elements in all those matrices are significantly larger than the oth-

ers, implying that the nodes are positively correlated and follow

the assumption of homophily.

B CONVERGENCE OF LBP

An exact condition that LBP converges has not been presented in

the literature. Thus, we empirically show that LBP converges more

often when the potential matrix is less skewed. We introduce a new

parameter d which controls the skewness of a potential: a potential

matrixψ is replaced by a weighted average 1
d
(ψ + (d − 1)M) with a

constant matrix M , whose elements are uniform and sum to one.

Thus, the potentials become less skewed as d increases.

For each dataset, we run LBP ten times with different sets of

observed nodes and show in Figure 7 the percentage of runs that

converge. We conclude it as a convergence when the maximum

difference between the messages in two consecutive iterations is

within 10−4 before 1000 iterations. As a result, it is shown that LBP
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hardly converges in three of the four datasets when d is a small

value such as 2 or 4. The convergence seems especially difficult

on CoRA and Wikipedia, which contain larger numbers of labels

compared with the other datasets. The convergence ratios become

100% for all dataset when d is at least 128.

Based on this result, we set d to 256 when LBP is used, to guaran-

tee a full convergence. On the contrary, it is not necessary to use d

when the junction tree algorithm is used because the convergence

is guaranteed: it stops after one iteration of fully propagating the

observed information. This is an important advantage of running

exact inference on subgraphs from BTW because it is not neces-

sary to modify the relationships arbitrarily, which leads to different

marginals from the ones that can be inferred from a network.
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