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Abstract We present approximate structure learning algorithms for Bayesian networks. We
discuss on the two main phases of the task: the preparation of the cache of the scores and
structure optimization, both with bounded and unbounded treewidth. We improve on state-of-
the-art methods that rely on an ordering-based search by sampling more effectively the space
of the orders. This allows for a remarkable improvement in learning Bayesian networks from
thousands of variables. We also present a thorough study of the accuracy and the running
time of inference, comparing bounded-treewidth and unbounded-treewidth models.

1 Introduction

Score-based structure learning of Bayesian networks is the task of finding the highest-scoring
directed acyclic graph (DAG), where the score function measures the appropriateness of the
DAG for the data. This task is NP-hard (Chickering et al., 2014), and is the subject of intense,
cutting-edge research. Even using the most recent theoretical advances (Cussens et al., 2017)
exact learning can be impractical, even if one restricts themselves to cases where the best
DAG has at most two parents per node. Hence, approximate methods are necessary to tackle
structure learning, especially in order to scale to domains with a large number of variables.

The task is usually accomplished in two phases: identification of a list of candidate
parent sets for each node (which we call parent set identification) and optimal assignment
of the parent set of each node (which we call structure optimization). Most research so
far has focused on structure optimization. For instance, there are exact approaches based
on dynamic programming (Koivisto & Sood, 2004; Silander & Myllymaki, 2006), branch
and bound (de Campos & Ji, 2011; de Campos et al., 2009), linear and integer program-
ming (Jaakkola et al., 2010), shortest-path heuristics (Yuan & Malone, 2013, 2012), to name a
few. A state-of-the-art approach is implemented by the software Gobnilp (Bartlett & Cussens,
2017; Cussens, 2011), which adopts a branch-and-cut idea using linear integer programming.
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This is an anytime algorithm; thus it provides an approximate solution at any step of the
computation (as long as a first valid graph has been found) until it eventually reaches the
exact solution. Yet, exact solvers do not scale to domains with a large number of variables.
Experiments so far arrive up to few hundreds of variables at their best, and only in particular
instances. One of the most scalable approaches with good empirical results to score-based
structure learning is the Acyclic Selection Ordering-Based Search (Scanagatta et al., 2015);
this is an approximate algorithm that scales up to thousands of variables.

Once the Bayesian network has been learned, one can gain insights into how variables
relate to each other; for instance, this is an important goal when studying gene regulatory
networks. Yet, in other applications, efficient inference is required in order to make predictions
using the model. The time complexity of (exact) inference grows exponentially with a
property of the DAG called treewidth (Bodlaender et al., 2001). The solvers discussed so
far learn expressive models that are suitable to understanding the domain and analyzing
the relationship among variables, but they perform structure learning without bounding the
treewidth of the learned model. Learning Bayesian networks with bounded treewidth is
indeed very challenging, since it generalizes the unbounded problem (and even determining
the treewidth of a DAG is NP-hard). Because of that, the machine learning community has
put effort in developing alternative modeling techniques in order to obtain tractable inference,
such as arithmetic circuits (Darwiche, 2009, Chap.12) and their learning from data (Lowd &
Domingos, 2008), sum-product networks (Poon & Domingos, 2011; Rooshenas & Lowd,
2014), among others.

Recent advances have made possible to achieve some results for structure learning of
Bayesian networks with bounded treewidth. Some exact methods (Berg et al., 2014; Korhonen
& Parviainen, 2013; Parviainen et al., 2014) have been proposed, but they do not scale to more
than hundreds of variables. Later, some approximate approaches have been devised (Nie
et al., 2015), which scale to a few hundreds of variables. A recent breakthrough in the
number of variables is the k-G algorithm (Scanagatta et al., 2016), which is able to learn
bounded-treewidth models of reasonable accuracy from thousands of variables.

In this paper we present a series of approximate techniques for score-based structure
learning of Bayesian networks; they include methods for parent set identification and structure
optimization, both with bounded and unbounded treewidth. The algorithms scale up to several
thousands of variables, even in the more challenging case of bounded treewidth. We build a
unified presentation based on findings from Scanagatta et al. (2015, 2016). The algorithms
for structure optimization that we present are ordering-based search methods; as a novel
contribution we propose an approach for effectively sampling the orders, which remarkably
improves the performance of both algorithms. Such an approach is general and might be
helpful for any ordering-based algorithm.

2 Bayesian Networks

Consider the task of learning the structure of a Bayesian Network from a data set of N

instances D = {D1, ..., DN}. The set of n random variables is X = {X1, ..., Xn}. We
assume the variables to be categorical (with a finite number of states) and the data set to be
complete. The goal is to find the highest-scoring DAG G over nodes X by defining the set
of parents ⇧1, ...,⇧n of each variable. Such a graph induces a joint probability distribution,
because of the assumed Markov condition: every variable is conditionally independent of its
non-descendant variables given its parent variables.
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Different score functions can be used to assess the quality of the DAG; see for ex-
ample (Liu et al., 2012) for a thorough discussion. In this work we adopt the Bayesian
Information Criterion (BIC), which is asymptotically proportional to the posterior probabil-
ity of the DAG. The BIC score is decomposable, being constituted by the sum of the scores
of each variable and its parent set:

BIC(G) =
nX

i=1

BIC(Xi,⇧i) =

nX

i=1

(

LL(Xi|⇧i) + Pen(Xi,⇧i)) ,

where LL(Xi|⇧i) denotes the log-likelihood of Xi and its parent set:

LL(Xi|⇧i) =

X
⇡2⇧i, x2Xi

Nx,⇡ log

ˆ✓x|⇡ ,

while Pen(Xi,⇧i) is the complexity penalization for Xi and its parent set:

Pen(Xi,⇧i) = � logN

2

(|Xi|� 1)(|⇧i|) .

ˆ✓x|⇡ is the maximum likelihood estimate of the conditional probability P (Xi = x|⇧i = ⇡);
Nx,⇡ represents the number of times (X = x^⇧i = ⇡) appears in the data set; | · | indicates
the size of the Cartesian product space of the variables given as argument. Thus |Xi| is the
number of states of Xi and |⇧i| is the product of the number of states of the parents of Xi.

By exploiting decomposability, structure learning can be accomplished in two phases.
The first phase is to identify a list of candidate parent sets (called parent set identification),
which can be done independently for each variable. The second phase is to decide the parent
set of each node in order to maximize the score of the resulting DAG (called structure
optimization). The ultimate goal is to find

G⇤ 2 argmax

G
BIC(G),

where we avoided using the symbol for equality because there might be multiple optima. The
usual first step to achieve such a goal is the task of finding the candidate parent sets for a
given variable Xi (a candidate parent set cannot contain itself). It regards the construction of
Li, the cache of possible parent sets ⇧i for Xi alongside their scores BIC(Xi,⇧i), which
without any restriction has 2n�1 possible parent sets, since every subset of X \ {Xi} is a
candidate. This becomes quickly prohibitive with the increase of n. If we apply a bound d on
the number of parents that a variable can have (that is, a limit on the in-degree of a node),
then the size of

Li = {h⇧i,BIC(Xi,⇧i)i | s(⇧i)  d}

reduces from 2

n�1 to ⇥(nd
), which might still be too large and we might be losing optimality

(this is the case if any optimal DAG would have more than d parents for Xi). s(·) represents
the actual cardinality of a set (for instance, s({Xi}) = 1 and s(⇧i) is the number of elements
in ⇧i).

There is no known manner of avoiding some loss, as this problem is hard itself. The
goal is to find the best approximate idea that still keeps in the cache the most promising
candidate sets. Pruning based on limiting the number of parents is not enough (nor the most
appropriate) if n is large, as we discuss in the next section.
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3 Parent set identification

The first objective is to produce a sensible approximation for the cache Li of each node. The
most common approach in the literature is to explore parent sets in sequential order until a
certain time-limit is reached: first the empty parent set is included in Li, then all the parent
sets of size one, then all the parent sets of size two, and so on and so forth, up to size d, the
maximum in-degree. We refer to this approach as sequential exploration. Since the number
of candidate parent sets increases exponentially with d, sequential exploration implies the
adoption of a low d when n increases, if one wants this method to finish in a reasonable
amount of time. For instance, d = 2 has been used when dealing with more than hundred
variables (Bartlett & Cussens, 2017; Cussens et al., 2013). This approach prevents detecting
higher-scoring parent sets with larger in-degree, while needing the computation of scores for
many low-scoring parent sets of low in-degree.

Pruning rules (de Campos et al., 2009) detect sub-optimal parent sets and allow to discard
parts of the search space, avoiding to spend time in computing their scores. Although they do
reduce the time required to explore the space of parent sets, they are not effective enough and
hence do not allow us to deal with much larger in-degrees, in particular when the number of
variables is large. Scanagatta et al. (2015) propose an approximate search of candidate parent
sets that explores them without limiting a priori the in-degree d. We describe such an approach
in the next section. It is worth mentioning that the methods for structure optimization that we
discuss in this paper work with any decomposable score function. However, the procedure
for efficient exploration of the space of the parent sets of this section exists only for BIC,
and it is an open question to devise similar ideas for other score functions.

3.1 Approximate exploration of parent sets

The main idea of Scanagatta et al. (2015) is to quickly identify the most promising parent sets
through an approximate scoring function that does not require scanning the data set. Later on,
only the scores of the most promising parent sets are computed. The approximate scoring
function is called BIC

⇤. The BIC⇤ of a parent set ⇧ = ⇧1 [⇧2 constituted by the union of
two non-empty and disjoint parent sets ⇧1 and ⇧2 is:

BIC

⇤
(X,⇧1,⇧2) = BIC(X,⇧1) + BIC(X,⇧2) + inter(X,⇧1,⇧2) , (1)

that is, the sum of the BIC scores of the two parent sets and of an interaction term, which
ensures that the penalty term of BIC⇤

(X,⇧1,⇧2) matches the penalty term of BIC(X,⇧1[
⇧2). In particular, inter(X,⇧1,⇧2) =

logN
2 (|X| � 1)(|⇧1| + |⇧2| � |⇧1||⇧2| � 1) �

BIC(X,?). The BIC

⇤
(X,⇧) score is equal to the BIC(X,⇧) score if the interaction

information ii(X;⇧1;⇧2) is zero (Scanagatta et al., 2015). Yet, this condition is generally
false; for this reason, BIC⇤

(X,⇧) is an approximate score, but it is efficiently computable.
If BIC(X,⇧1) and BIC(X,⇧2) are known, then BIC

⇤ is computed in constant time (with
respect to data accesses).

The independence selection algorithm (Scanagatta et al., 2015) exploits BIC⇤ to quickly
estimate the score of a large number of parent sets. It is described in Algorithm 1. It adopts
two lists: (1) open: a list for the parent sets to be explored, ordered by their BIC⇤ score; (2)
closed: a list of already explored parent sets, along with their actual BIC score. The algorithm
returns the content of the closed list, which becomes Li for each variable Xi. The procedure is
repeated for every variable and can be easily parallelized. Independence selection prioritizes
the computation of the BIC score of the most promising parent sets (those with highest BIC⇤
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score) without constraining the in-degree. It consistently increases the scores achieved by
different structure optimization algorithms when compared to sequential ordering (Scanagatta
et al., 2015), and thus we adopt it in all our experiments.

Algorithm 1 IndependenceSelection(X)

1: for all Y 2 X \ {X} do . Compute the BIC scores of all single parents
2: ⇧Y  {Y }
3: closed.put(⇧Y , BIC(⇧Y ))
4: end for

5: for all Y1 2 X \ {X} do . Compute the BIC⇤ of all bivariate parent sets
6: for all Y2 2 X \ {Y1, X} do

7: ⇧  {Y1, Y2}
8: open.put(⇧,BIC⇤(⇧))
9: end for

10: end for

. Explore the space of parent sets, computing at each iteration the BIC score of the parent set with
highest BIC⇤

11: while open 6= ? & thereIsT ime() do

12: ⇧  popBest(open)
13: closed.put(⇧, BIC(⇧))
14: for all Y 2 X \ {X [⇧} do

15: ⇧n  ⇧ [ Y
16: if ⇧n 62 closed & ⇧n 62 open then

17: open.put(⇧n, BIC⇤(⇧n))
18: end if

19: end for

20: end while

4 Structure optimization

The objective of structure optimization is to select the parent set of each node from its cache
in order to maximize the score of the resulting DAG. At this stage, all caches of scores are
assumed to be available. The number of possible Bayesian networks structures increases
super-exponentially with the number of variables, so the task is very hard. When restricted
to the available caches, there are still

Qn
i=1 s(Li) graphs to evaluate if it were to use a

brute-force approach.
We take the software Gobnilp (Bartlett & Cussens, 2017; Cussens, 2011) as a benchmark

for our evaluations, since it is the state of the art for exact structure learning. It is available from
https://www.cs.york.ac.uk/aig/sw/gobnilp/ and is an anytime algorithm.
When provided with enough time, it certainly finds the highest-scoring graph, while it
provides an approximate solution (provided that a certain amount of time has been given
for it to find the first valid graph) whenever it has not yet reached an optimum or has not
yet been able to prove it is an optimum. In terms of approximate methods, an effective
approach in large domains (thousands of variables) is Acyclic Selection Ordering-Based
Search (ASOBS) (Scanagatta et al., 2015). It consistently outperforms Gobnilp on data sets
containing more than 500 variables, while Gobnilp generally wins on smaller data sets. In
this section we describe ASOBS and then we propose a novel variant named ASOBSENT,
which improves on ASOBS by applying a better scheme to sample orders.
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4.1 Acyclic Selection Ordering-Based Search

Sampling from the space of orders rather than from the space of structures is certainly
appealing since the space of orders is significantly smaller than the space of structures. For
any fixed ordering of the n variables, the decomposability of the score enables efficient
optimization over all DAGs compatible with the ordering (Cooper & Herskovits, 1992).
Moreover, identifying the highest-scoring network consistent with a variable order is time-
efficient. A network is consistent with the order � if 8Xi : 8X 2 ⇧i : X � Xi; we call this
condition the consistency rule. A network consistent with an order is necessarily acyclic. In
order to identify the highest-scoring network given an order, we have to choose independently
the best parent set for each node Xi among those containing only variables that are antecedent
of Xi in that order. Finding the highest-scoring network given the ordering is thus simple and
efficient (can be done in linear time in the size of the caches).

The Ordering-Based Search (OBS) algorithm by Teyssier & Koller (2005) learns the
highest-scoring network given an order, according to the consistency rule. Then it greedily
explores several neighboring orders by considering swaps between variables that are adjacent
in the order. Updating the score of the network after swapping two adjacent variables is
efficient thanks to score decomposability. ASOBS performs a similar computation but relaxes
the consistency rule in order to retrieve higher-scoring DAGs that are inconsistent with the
provided order. In particular, it allows arcs from a variable to its successors (back-arcs)
if they do not introduce a directed cycle. Scanagatta et al. (2015) prove that, for a given
order, ASOBS achieves equal or higher score than OBS. Moreover, ASOBS empirically
outperforms OBS in every analyzed data set (Scanagatta et al., 2015).

We recall that Xj is an ancestor of Xi if there is a directed path from Xj to Xi. In this
case, we equivalently say that Xi is a descendant of Xj . The ASOBS algorithm is as follows:

1. Build a Boolean square matrix isDescendantOf that tracks the descendants of each
node; thus its entry in position (Xi, Xj) is true if and only if Xi is a descendant of Xj .
All entries of isDescendantOf are initialized as false as we start from an empty
structure.

2. For each Xj in the order, with j = n, . . . , 1:
(a) Select the highest-scoring parent set ⇧j that contains no descendants of Xj , as

checked through matrix isDescendantOf.
(b) Update matrix isDescendantOf to reflect that:

– Each variable belonging to ⇧j is ancestor of Xj ;
– Each ancestor of Xj has as descendants Xj , the descendants of Xj and any

other node in the path between the ancestor and Xj .

While the algorithm is quite simple and details about the implementation could be
omitted, we would like to point out that a smart representation for the data structure of
ancestors/descendants allows us to achieve an overall computational complexity that is
asymptotically equal to OBS.

In (Scanagatta et al., 2015), ASOBS is implemented by uniformly sampling the space
of orders and repeating the above procedure for each sampled order. In the following we
introduce a novel approach, which more effectively samples from the space of orders and
might be applied to any structure learning algorithm based on ordering search.
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4.2 Entropy-based sampling

We investigate which parent sets are especially important for the score of a DAG, with the
aim of improving the sampling strategy and thus to cover better regions of the space of orders.
To analyze this problem, we introduce the following range statistic:

range

[

BIC(Xi,⇧i)] = BIC(Xi,⇧i)� min

⇧0
i2P(Xi)

BIC(Xi,⇧
0
i), (2)

where P(Xi) denotes the set of the feasible parent sets for Xi. Thus the range measures how
much the score improves when assigning to Xi the parent set ⇧i instead of the lowest-scoring
parent set (usually the empty parent set). Intuitively, high-entropy variables should achieve
higher differences in score when compared to using no parents, since their likelihood (and
thus their score) is low without parents. Thus their score can be largely improved through
careful selection of their parent set. To verify this intuition, we compute the range score of
every parent set of the most entropic and the least entropic variables of different data sets,
listed in Tab. 1.

Results referring to four data sets are given in Fig. 1; note that to understand which
variables can most affect the overall score by a more careful selection of their parent sets, we
are interested in the highest values of range. High-entropy variables (shown in black, last
five boxplots of each graph) yield much higher values of range than low-entropy variables
(shown in red, first five boxplots of each graph). For instance, in the data set Reuters-52,
high-entropy variables yield ranges that are up to an order of magnitude larger than those of
low-entropy variables. Moreover, ranges have a much larger span for high-entropy variables
than for low-entropy variables. Again with reference to Reuters-52, the difference between
the maximum and the median range is about 500 for high-entropy variables and lower than
25 for low-entropy variables.

Fig. 1 The red boxplots on the left (first five boxplots of each figure) refer to the five least entropic variables
of each data set. The black boxplots on the right refer to the five most entropic variables of each data set. Each
boxplot represents the distribution of the range statistic, across variables belonging to the same data set.

The results about the range statistic suggest that the choice of the parent sets of high-
entropy variables has the largest impact on the eventual score of the DAG. We thus modify
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ASOBS in order to better assign the parent sets of the high-entropy variables. We do so by
putting them at the end of the order provided to ASOBS, so that they are offered plenty of
different parent sets to choose from. In particular, we sample the variables of the order in
a fashion that is proportional to their entropy. Suppose we have already chosen the first p
variables of the ordering (p= 0,1, . . . , n-1). Without loss of generality, denote a still unselected
variable as Xj (j = p + 1, . . . , n). The (p + 1)-th position of the ordering is chosen by
assigning to each of the n� p variables not already selected a weight proportional to their
entropy:

wj =
H(Xj)Pn

i=p+1 H(Xi)
,

where H(·) denotes the empirical entropy. The next variable of the order is sampled from a
discrete distribution, whose probabilities are constituted by the above weights wj . We call
ASOBSENT this variant of ASOBS, since it is equipped with the entropy-based sampling.

4.3 Experiments

We compare ASOBSENT, ASOBS and Gobnilp using the twenty data sets of Tab. 1: such a
collection of data sets has been previously used for instance by Rooshenas & Lowd (2014)
and by others referenced therein. The data sets are available for instance from https:
//github.com/arranger1044/awesome-spn#dataset. They contain between
16 and 1556 binary-valued variables. Each data set is split in three subsets, producing a total
of 60 structure learning experiments. Moreover, in order to test the algorithms in domains
with a large number of variables, we generate further 15 synthetic data sets as follows.
Using the BNgenerator package1, we generate five networks containing 2,000 variables, five
networks containing 4,000 variables and five networks containing 10,000 variables. From
each generated network we then sample a data set of N=5,000 instances.

In each experiment we run Gobnilp, ASOBS and ASOBSENT for one hour, on the same
computer and providing them with the same caches of candidate parent sets, which were pre-
computed using the BIC

⇤ approach of Sect. 3.1. When computing the caches of parent sets,
we allowed one minute per variable with no maximum in-degree. The detailed results of all the
experiments (scores obtained by each method in each data set) of this paper are available at:
http://ipg.idsia.ch/papers/scanagatta2017b/supplementary.pdf.

We also considered further competitors for structure learning of Bayesian networks. For
instance the package urlearning2 implements search methods based on (Yuan & Malone,
2013). Yet, it could not learn from data set containing more than 100 variables; similar limits
are indeed acknowledged also by the authors. We also tried WinMine3, but it failed to provide
results within an hour when dealing with more than 500 variables. On smaller data sets,
it was anyway outperformed by both Gobnilp and ASOBS-ENT (notice that we ran these
experiments using the BDeu score, as WinMine does not support the BIC score). We report
the results in the supplementary material.

We analyze the results in Tab. 2 by separating small data sets (n  200), large data sets
(200 < n < 2000) and very large data sets (n � 2000). In each experiment we measure
the difference in terms of BIC scores between ASOBSENT and ASOBS, and between
ASOBSENT and Gobnilp. We denote this difference by �BIC.

1 http://sites.poli.usp.br/pmr/ltd/Software/BNGenerator/
2 www.urlearning.org/
3 www.microsoft.com/en-us/research/project/winmine-toolkit/
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Real data sets
n n n n

Nltcs 16 Jester 100 DNA 180 WebKB 839
Msnbc 17 Netflix 100 Kosarek 190 Reuters-52 889

Kdd 64 Accidents 111 MSWeb 294 C20NG 910
Plants 69 Retail 135 Book 500 BBC 1058
Audio 100 Pumsb-star 163 EachMovie 500 Ad 1556

Synthetic data sets
n n n

rand2000-0 2000 rand4000-0 4000 rand10000-0 10000
rand2000-1 2000 rand4000-1 4000 rand10000-1 10000
rand2000-2 2000 rand4000-2 4000 rand10000-2 10000
rand2000-3 2000 rand4000-3 4000 rand10000-3 10000
rand2000-4 2000 rand4000-4 4000 rand10000-4 10000

Table 1 Data sets sorted according to the number n of variables.

A positive �BIC provides evidence in favor of the higher-scoring model. The �BIC

values can be interpreted as follows (Raftery, 1995):

– �BIC >10: extremely positive evidence;
– 6 <�BIC <10: strongly positive evidence;
– 2 <�BIC <6: positive evidence;
– �BIC <2: neutral evidence.

We perform the sign test considering one method as winning over the other when there
is a �BIC of at least 2 in its favor, and treating as ties the cases in which |�BIC| <2. The
statistically significant differences (p-value <0.01) are boldfaced in Tab. 2. The supplementary
material shows in detail the scores obtained by each solver on each data set.

n  200 200 < n < 2000 n � 2000

ASOBSENT vs ASOBS Gobnilp ASOBS Gobnilp ASOBS Gobnilp

{�BIC}
extremely positive 21 4 21 23 15 -

strongly positive 0 0 1 1 0 -
positive 0 0 1 0 0 -
neutral 0 0 0 0 0 -

negative 0 0 0 0 0 -
strongly negative 0 0 0 0 0 -

very negative 15 32 1 0 0 -

p-value .58 < 0.01 < 0.01 < 0.01 < 0.01

Table 2 Comparison of ASOBSENT against ASOBS and Gobnilp. The table shows the number of occurrences
of each scenario and p-values of a sign test.

As for the comparison of ASOBSENT and ASOBS, ASOBSENT performs better in all
three categories. Its advantage is more prominent in large and very large data sets: in almost
every data set it improves the BIC score by more than ten points from ASOBS’s values. The
number of victories in favor of ASOBSENT is significant both in large and very large data
sets.
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Regarding the comparison of ASOBSENT and Gobnilp, Gobnilp is significantly better
than ASOBSENT in small data sets (n  200), while in large data sets the situation is
reversed: ASOBSENT outperforms Gobnilp in all large data sets. When dealing with very
large data sets (n � 2000), Gobnilp failed to provide a solution after one hour of computation.

4.4 Discussion

We further investigate the difference between ASOBSENT and ASOBS. We do this by
tracking the difference between BIC scores achieved by ASOBSENT and ASOBS on each
individual variable Xi:

�BIC(Xi,⇧i) = BICASOBSENT(Xi,⇧i)�BICASOBS(Xi,⇧i) . (3)

We expect �BIC(Xi,⇧i) to be positive for high-entropy variables and negative for low-
entropy variables. For each variable Xi, we then compute the following statistic:

cusum(�BIC(Xi)) =

X

Xj :H(Xj)�H(Xi)

�BIC(Xj ,⇧j) .

This statistic measures the advantage of ASOBSENT over ASOBS on the variables that are
more than or equally entropic to Xi itself. In Fig. 2, we plot this statistic as a function of
H(Xi); it shows that ASOBSENT builds a large advantage (largely positive cusum) on high-
entropy and medium-entropy variables. This advantage is eventually lost as we reach the least
entropic variables, but it remains largely positive in the end. Because of that, ASOBSENT

yields higher-scoring networks than ASOBS.

Fig. 2 Cusum statistic as a function of H(Xi) for different data sets. The value of the cusum at the end of
the curve (i.e., in relation to least entropic variables) equals the difference between the DAG identified by
ASOBSENT and ASOBS.

5 Treewidth-bounded structure optimization

The structure learning approaches discussed so far (including ASOBSENT) do not bound the
treewidth of the DAG. They are therefore a good choice when one wants to learn an expressive
model to understand how variables relate to each other. However, it may be important to
learn Bayesian networks with bounded treewidth when one needs to do efficient inferences
with the model. We discuss this problem in this section. Before we present some ideas and
algorithms, we need some background material.
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5.1 Treewidth and k-trees

We denote an undirected graph as U = (V,E), where V is the vertex set and E is the edge
set. A tree decomposition of U is a pair (C, T ) where C = {C1, C2, ..., Cm} is a collection of
subsets of V and T is a tree over C, so that:

– V = [m
i=1Ci;

– for every edge that connects the vertices v1 and v2, there is a subset Ci that contains both
v1 and v2;

– for all i, j, k in {1, 2, ..m}, if Cj is in the path between Ci and Ck in T , then Ci \ Ck ✓
Cj .

The width of a tree decomposition is maxi s(Ci)� 1, where s(Ci) is the number of ver-
tices in Ci. The treewidth of U is the minimum width among all possible tree decompositions
of U . Treewidth can be equivalently defined in terms of triangulations of U . A triangulated
graph is an undirected graph in which every cycle of length greater than three contains a
chord. The treewidth of a triangulated graph is the size of its maximal clique minus one. The
treewidth of U is the minimum treewidth over all the possible triangulations of U .

The treewidth of a DAG is characterized with respect to all possible triangulations of
its moral graph. The moral graph of a DAG is an undirected graph that includes an edge
(i� j) for every arc (i ! j) in the DAG and an edge (p� q) for every pair of edges (p ! i),
(q ! i) in the DAG. The treewidth of a DAG is the minimum treewidth over all the possible
triangulations of its moral graph. Thus the maximal clique of any moralized triangulation of
G is an upper bound on the treewidth of the model.

A complete graph is a clique. A clique containing k + 1 nodes is a (k + 1)-clique; it has
treewidth k. A clique is maximal if it is not a subset of a larger clique. A (k + 1)-clique thus
contains multiple non-maximal k-cliques. An undirected graph is a k-tree if it has treewidth
k and the addition of any edge increases its treewidth. A k-tree can be inductively built as
follows (Patil, 1986). We start with a (k + 1)-clique. Then we connect a new node to a
k-clique of the original graph, obtaining an updated graph. Other nodes can be added one
at a time following the same procedure. A partial k-tree is a subgraph of a k-tree; as such,
it has treewidth bounded by k. An example of the iterative construction of a k-tree (k = 2)
is given in Fig. 3. We start with the clique over the variables A, B, C. Then we link D to
the 2-clique {A,B}. Then we link E to the 2-clique {C,A}, and F to the 2-clique {C,E}.
Fig. 3 also shows in blue the tree decomposition at each iteration. The nodes of the tree have
size three; thus the treewidth is two.
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C ABC

D

ABD

A

B
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D

ABD

E ACE
A

B
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D

ABD

E ACE

F

CEF

Fig. 3 Iterative construction of a k-tree (white nodes) with treewidth k=2. The corresponding tree decomposi-
tion is shown alongside (blue nodes).



12 Mauro Scanagatta et al.

5.2 Learning Bayesian networks with bounded treewidth

Learning Bayesian networks with bounded treewidth is very challenging, in particular because
treewidth is a global property of the DAG and determining it is already NP-hard. A pioneering
approach, polynomial in both the number of variables and the treewidth bound, has been
proposed by Elidan & Gould (2008). It incrementally builds the network; at each arc addition
it provides an upper-bound on the treewidth of the learned structure. The limit of this
approach is that, as the number of variables increases, the gap between the bound and the
actual treewidth becomes large, leading to sparse networks.

An exact method has been proposed by Korhonen & Parviainen (2013), which finds
the highest-scoring network with the desired treewidth. However, its complexity increases
exponentially with the number of variables n and it has been applied in experiments with fewer
than 16 variables. Parviainen et al. (2014) adopted an anytime integer linear programming
(ILP) approach, called TWILP. If the algorithm is given enough time, it finds the highest-
scoring network with bounded treewidth. Otherwise, it returns a sub-optimal DAG with
bounded treewidth. Such an ILP problem has an exponential number of constraints in the
number of variables; this limits its scalability, even if the constraints can be generated online.
Typically it cannot handle data sets containing more than 100 variables. Berg et al. (2014)
cast the problem of structure learning with bounded treewidth as a problem of weighted
partial maximum satisfiability. They solved the problem exactly through a MaxSAT solver
and performed experiments with at most 30 variables. Nie et al. (2014) proposed a more
efficient anytime ILP approach with a polynomial number of constraints in the number of
variables. Yet, they reported that the quality of the solutions quickly degrades as the number
of variables exceeds a few dozens, and that no satisfactory solutions are found with data sets
containing more than 50 variables.

To scale to larger domains, one has to resort to approximate approaches. The S2 algo-
rithm (Nie et al., 2015) samples uniformly the space of k-trees; the sampled k-trees are
assessed via a heuristic scoring function (called informative score). The DAG is then recov-
ered as a sub-graph of the k-tree with highest informative score. Nie et al. (2016) further
refined this idea, obtaining via A⇤ the k-tree that is guaranteed to maximize the informative
score. In (Scanagatta et al., 2016) the authors presented the k-G algorithm. It consistently
yields higher-scoring networks than S2 for different tested treewidths. The advantage be-
comes especially important in the largest data sets that contain thousands of variables. An
algorithm named k-MAX that follows a similar idea was recently presented in (Scanagatta
et al., 2018). We describe k-G in the next section, before we present an improvement of it.

5.3 The k-G algorithm

Like ASOBS, k-G is based on sampling orders. In particular, it samples an order and then it
greedily (whence the G letter in the name k-G) searches for the highest-scoring DAG with
bounded treewidth consistent with the order. The DAG is built iteratively; one variable is
added at each iteration while keeping the moral graph of the DAG as a subgraph of a k-tree,
which guarantees that the final DAG will have treewidth bounded by k. The algorithm is
discussed in the following.

The algorithm starts by choosing an initial k-tree. Such an initial k-tree Kk+1 consists of
the complete clique over the first k + 1 variables in the order. Then the initial DAG Gk+1

is learned over the same k + 1 variables. Since k + 1 often regards a tractable number of
variables, we can exactly learn Gk+1 adopting a solver such as Gobnilp. Because the moral
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graph of Gk+1 is a subgraph of Kk+1, we have that Gk+1 has bounded treewidth. We then
iteratively add each remaining variable, according to the order. Consider the next variable in
the order, X�i, where i 2 {k + 2, ..., n}. Let us denote by Gi�1 and Ki�1 the DAG and the
k-tree that must be updated after adding X�i. We add X�i to Gi�1, constraining its parent
set ⇧�i to be a (subset of a) k-clique in Ki�1. This yields the updated DAG Gi. We then
update the k-tree, connecting X�i to such a k-clique. This yields the k-tree Ki; it contains
an additional k + 1-clique compared to Ki�1. By construction, Ki is also a k-tree. Because
the moral graph of Gi cannot have arcs outside this (k + 1)-clique, it is a subgraph of Ki.

In order to choose the parent set of the variable being added to the graph, k-G chooses the
highest-scoring parent set among the feasible ones. We denote the set of existing k-cliques
in K as KC . Thus k-G chooses as parent set for X�i the highest-scoring parent set that is a
subset of an existing k-clique in KC .

⇧X�i
2 argmax

⇡⇢C,C2KC

BIC(X�i,⇡�i) .

Thus k-G finds a locally optimal DAG consistent with a given order and whose treewidth is
bounded by k.
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Fig. 4 Example of a treewidth-bounded DAG (k=2) being built iteratively. On the left, the DAG at each step
(green nodes) is presented, and on the right the resulting k-tree (white nodes). We start with the variables
{A,B,C} and we add the remaining ones one at a time (D, E and F ).

5.4 Sampling orders for k-G

The insights of Sect. 4.2 about high-entropy and low-entropy variables can be applied also to
k-G. We thus modify k-G by applying the entropy-based approach for sampling the orders,
as discussed in Sect. 4.2. We call this new approach k-GENT as an extension of the original
algorithm k-G.

We compare k-G and k-GENT on small, large and very large data sets already introduced
in Sect. 4. We provide each solver with the same cache of candidate parent sets, pre-computed
using BIC

⇤, allowing one minute per variable and no maximum in-degree. Each solver is
executed for one hour on the same computer and we track the BIC score obtained by the two
algorithms for treewidths k 2 {2, 4, 5, 6, 8}. We summarize the results by again separating
small data sets (n  200, Tab. 3), large data sets (200 < n < 2000, Tab. 4) and very large
data sets (n � 2000, Tab. 4).

k-GENT performs better than k-G even in small data sets (n  200). In spite of that,
the sign test does not claim significance when analyzing the number of wins and losses of
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the two methods on such data sets. On the other hand, k-GENT outperforms k-G in almost
every large and very large data set; the analysis of the number of wins and losses shows
significance for each tested treewidth. In most cases, the obtained �BIC is larger than 10,
providing very strong evidence in favor of the model learned by k-GENT. The difference is
significant (sign-test, p<0.01) for every tested treewidth.

n < 200 Treewidth

k-GENT vs k-G 2 4 6 8

�BIC
Very strong (>10) 24 19 23 22

Very negative (<-10) 12 17 13 14

p-value 0.06 0.87 0.13 0.24

Table 3 k-GENT often beats k-G in small data sets, but the number of victories is not statistically significant.

200 < n < 2000 Treewidth

k-GENT vs k-G 2 4 6 8

�BIC
Very strong (>10) 24 22 22 24

Strongly positive (between 6 and 10) 0 1 1 0
Strongly negative (between -10 and -6) 0 0 0 0

Very negative (<-10) 0 1 1 0

p-value < 0.01 < 0.01 < 0.01 < 0.01

n > 2000 Treewidth

k-GENT vs k-G 2 4 6 8

�BIC
Very strong (>10) 12 14 14 14

Very negative (<-10) 3 1 1 1

p-value < 0.01 < 0.01 < 0.01 < 0.01

Table 4 k-GENT consistently achieves a larger BIC score than k-G in large and very large data sets. In both
settings, the amount of victories is statistically significant.

Scanagatta et al. (2016) shows that k-G outperforms S2; for the sake of completeness, we
have compared k-GENT to S2. It further increases the advantage achieved by k-G over S2.
Out of the 75 data sets used in this experiments, of which 36 have are small, 24 are large,
and 15 are very large, k-GENT always yields a higher score than S2. In the great majority of
cases the improvement is larger than 10; smaller improvements are found only in some data
sets with less than 70 variables.
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5.5 Inference on real data sets

One of the main reasons to learn Bayesian networks of bounded treewidth is to ensure that
their use for inferences later on can be performed exactly and efficiently. In this section we
compare the performance (in terms of inferential results between models that were learned
with bounded and unbounded treewidths). We consider the 20 real data sets of Tab. 1. The
inference task that we take on is the computation of the probability of evidence P (e) of five
randomly selected variables, which we set to random states.

When dealing with large real data sets, the actual value of P (e) may be unknown (since it
is a computationally challenging problem). We thus (approximately) assume that the ground-
truth is the highest-scoring network of unbounded treewidth that is available to us; that is,
we assume that the true networks is either the one obtained by ASOBSENT or by Gobnilp
(whichever achieves the best score). We then compute P (e) by performing exact inference
on such a network, using the algorithm Iterative Join Graph Propagation (Mateescu et al.,
2010) and running it until convergence. This software is available from http://www.hlt.
utdallas.edu/˜vgogate/ijgp.html.

We assess the difference between P (e) computed using the assumed ground-truth and
using the network with bounded treewidth (k=2,4 6,8) learned by k-GENT. For each data set,
we run 100 queries and we measure the mean absolute error (mae) of the resulting inference
for each bounded-treewidth model:

mae =

1

q

X

i

|Pi(e)� ˆPi(e)| ,

where q denotes the total number of queries, Pi(e) and ˆPi(e) are the probability of evidence
on the i-th query computed by respectively the model assumed as ground-truth and the
bounded-treewidth model. We show in Fig. 5 how mae varies with the treewidth. Overall,
the difference in mae goes down as the treewidth increases, but it almost vanishes at k = 6

to k = 8, suggesting that a treewidth larger than 8 should be rarely necessary.

Fig. 5 Distribution of mean absolute errors, for bounded-treewidth models with different treewidths. Each
boxplot represents mae measures taken on 20 data sets.

Besides mae, we analyze the time required by the inferences. We report summary results
(obtained by averaging over all data sets) in Fig. 6, including also the unbounded model in
the comparison. The most striking result is that the bounded-treewidth models are at least
one order of magnitude faster than the unbounded-treewidth ones, even with treewidth as
large as 8. Such large differences are partially due to the fact that the query involves multiple
variables. Smaller differences are observed when computing marginals for these real data
sets. Tab. 5 reports mean inference time and mae for models with different treewidths. Yet,
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Fig. 6 Distribution of computational times on the 20 data sets in Tab. 1 for each model. On each of the 20 data
sets we record the mean running time of 100 inferences; thus eventually we represent such 20 means for each
model with a boxplot.

we show that orders of magnitude of difference in the running time are observed also when
computing marginals, when when deal with domains containing thousands of variables, as
we study in the next section.

asobs k-2 k-4 k-6 k-8

time mae time mae time mae time mae time

64.2 0.0030 2.66 0.0018 3.6 0.0018 4.1 0.0016 4.52

Table 5 Mean inference results on 20 data sets, running 100 queries for each data set. Times are expressed in
seconds.

5.6 Inference on synthetic data sets

Now we take on inferential tasks over domains where the true networks is known, so we have
access to the true probability of evidence. In this way, we compare inferential results obtained
from the networks learned by ASOBSENT and by k-GENT , using different treewidths
(k = 2, 4, 6, 8). We consider the 15 very large synthetic data sets (n � 2000) of Tab. 1.

Unbounded-treewidth models containing this amount of variables pose serious challenges
for inference. Even marginals cannot be computed exactly. In several cases we have had
no convergence of the inference after 30 minutes of computation. We thus resorted to
approximate inference. Considering that inference with bounded-treewidth models take
consistently less than 0.1 seconds (recall that we are computing marginals), we allow one
minute (that is, a time superior by two orders of magnitude) of approximate inference
for the queries applied to the true unbounded-treewidth models. In these experiments, we
do not compute the probability of joint observations, which would even been even more
demanding. For each network, we perform inference regarding the marginal probability
of 100 different variables. We select the leaves of the network as variables to be queried,
as this requires marginalizing out the largest number of variables. This setting should be
especially challenging for the accuracy of bounded-treewidth models, which have limited
expressiveness. If some intermediate potentials are poorly estimated, errors would propagate.
In case the network contains less than 100 leaves, we run the remaining queries on randomly
chosen parents of the leaves. We again perform the inferences using Iterative Join Graph
Propagation (Mateescu et al., 2010).
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Let us denote the true marginal of X by P (X) and the marginal estimated by a model by
ˆP (X). Let us denote by Q the set of 100 variables selected for as queries. The mean absolute
error (mae) of the marginal query is then:

mae =

1

s(Q)

X

X2Q

1

|X|
X

x2X

|P (x)� ˆP (x)| . (4)

In order to compare the bounded-treewidth models against the unbounded models learned
with ASOBSENT, we divide mae of each bounded-treewidth model by the mae obtained
on the same data set by the model learned with ASOBSENT. We call this measure relative
mae. We show in Fig. 7 boxplots of relative mae for each learned model (with k = 2, 4, 6, 8).
Remarkably, the median of the relative mae is close to one already for a low treewidth
bound of 2, and becomes slightly lower than one for larger treewidths, indicating a slightly
better accuracy for the treewidth-bounded models. One might wonder why the treewidth-
unbounded models do not yield more accurate inferences than the treewidth-bounded ones,
which have lower score. A first conjecture is that we are considering marginal queries,
while treewidth-unbounded models might have an advantage in joint queries involving many
variables. Another conjecture is that their accuracy might be deteriorated by approximate
inference. We leave this type of investigation for future experiments.

Fig. 7 Relative mae between the bounded-treewidth models and the unbounded-treewidth models learned by
ASOBSENT. Each model performs 100 marginal inferences in each of the 15 very large data sets. We average
the results referring to the same data set, obtaining 15 observations for each model. The boxplots visualize
such observations.

Hence, besides delivering huge computational savings, bounded-treewidth models are
competitive with unbounded-treewidth models as for the accuracy of the inference. This
corroborates with findings of Elidan & Gould (2008), who pointed out that bounding the
treewidth prevents selecting overly complicated structures of dependences, thereby reducing
the chance of overfitting.

6 Conclusions

We have presented a set of approximate algorithms for structure learning of Bayesian net-
works. They include parent set identification, structure optimization and structure optimization
under bounded treewidth. Taken together they allow for a remarkable improvement regarding
the Bayesian network structure learning task for domains with thousands of variables, both
for bounded and unbounded treewidth learning.

We foresee two main directions for future work. From the methodological viewpoint, it
would be interesting to extend the procedure of BIC⇤ for the preparation of the cache of the
parents also to other scoring function for Bayesian networks, such as the Bayesian Dirichlet
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equivalent uniform (BDeu) score. From the empirical viewpoint, it would be interesting to
compare bounded-treewidth Bayesian networks against other probabilistic models that allow
tractable inference and scale to thousands of variables, such as sum-product networks, in
terms of their computational performance and accuracy of inferences.
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